7

Functional Testing and
Structural Testing

T. Chusho*

Abstract

The most important aspect of software testing is a method for
selecting test data because the correctness of program logic is a
major factor in software reliability, which is a part of software
quality. These methods are categorized into functional testing
and structural testing. The former implies that test data is
selected on the basis of the functional specification of programs,
and the latter implies that test data is selected on the basis of the
control structure of programs.

The testing methods are twofold. First, a systematic test
case generation method for functional testing (AGENT) is
developed. AGENT includes a functional diagram (FD) which
formally expresses the functional specification of programs by
using a state transition model and a boolean function model.
AGENT automatically generates test cases from an FD.

Structural testing is more practical and compensates for the
inadequacies of functional testing. The conventional coverage
measure for branch testing has, because all branches are treated
equally, defects such as overestimation of software quality and
redundant test data selection. These problems can be avoided by
paying attention to only those branches essential for path testing.

In addition, a testing tool for the new measure (SCORE) is
developed to differentiate essential branches from non-essential
branches and to measure the coverage rate of these essential
branches. By using this tool, it is ascertained that the number of
essential branches is about 60% of all branches. As a result, the
prevention of redundant test data selection is confirmed by a
reasonable algorithm for test data selection based on a 40%
reduction in the number of branches to be monitored. Further-
more, an efficient algorithm for redundancy elimination in a
selected test data set is presented.

*Systems Development Laboratory, Hitachi Ltd., Kawasaki, Japan

155

156 Japanese Perspectives in Software Engineering
7.1 Introduction

Program testing constitutes approximately half of the overall cost of
software development and is the key to improving software productivity
and reliability. Many different software testing tools have already been
developed to support the various aspects of software testing [1,2]. In
particular, the most important aspect of software testing is finding a
method for selecting test data [3] because the correctness of program
logic is a major factor in software reliability, which is a part of software
quality.

Such methods are categorized into functional testing and structural
testing. The former implies that test data is selected on the basis of the
function specification of a program, and the latter implies that test data is
selected on the basis of the control structure of a program.

Functional testing is thought to be more basic than structural testing
because errors in a program are defined as behaviour discordant with the
functional specification of the program. A systematic test case generation
method for functional testing called AGENT (automated generation
method of test cases) has been developed [4,5]. AGENT consists of the
following components:

e afunctional diagram (FD) which formally expresses the functional
specification of a program;

¢ a mechanical procedure for generating test cases from the FD.

An FD model is composed of a state transition model and a boolean func-
tion model. AGENT automatically generates test cases from an FD.
Section 7.2 presents the method used for generating test cases. It explains
the FD notation and the generation algorithms and provides a concise
outline of the AGENT program.

Structural testing is more practical and compensates for the
inadequacies of functional testing. There are several methods and tools
for structural testing [6]. In particular, a lot of attention has been paid to
branch testing, a form of simplified path testing. A typical branch testing
tool measures the ratio of executed branches to all branches in a program.
The coverage measure [7,8] is used to estimate the quality of a tested pro-
gram with regard to the correctness of program logic and to select test
data by which normally unexecuted branches are executed.

However, because all branches are treated equally, the conventional
coverage measure for branch testing has defects such as overestimation of
software quality and redundant test data selection. These problems can
be avoided by paying attention to only those branches essential for path
testing. That is, if one branch is executed whenever another particular
branch is executed, the former branch is non-essential for path testing.

7: Functional Testing and Structural Testing 157

This is because a path covering the latter branch also covers the former
branch. Branches other than such non-essential branches will be referred
to as essential branches.

SCORE (the source-level coverage rate evaluator), a testing tool for
the new measure, has been developed in order to differentiate essential
branches from non-essential branches and to measure the coverage rate
of these essential branches. It has been found that the problems of
conventional branch testing are reduced if this tool is used. Section 7.3
presents an algorithm for test data selection resulting in reduced
redundancy and an algorithm for eliminating redundancy in a selected
test data set by paying attention to only essential branches.

7.2 A functional testing tool
7.2.1 A functional testing method

Functional testing is thought to be more basic than structural testing
because errors in a program are defined as behaviour discordant with the
functional specification of the program. One conventional approach to
functional testing is to have people read a functional specification and to
pick out test cases intuitively. However, high software reliability cannot
be achieved by this method.

AGENT, a systematic test case generation method for functional
testing, was therefore developed. AGENT is composed of the following
components:

o an FD, which formally expresses the functional specification of a
program;
* amechanical procedure for generating test cases from the FD.

An FD model is composed of a state transition model and a boolean func-
tion model. A state transition expresses input data sequences and
corresponding output data. A boolean function in a state expresses the
correspondence between conditions on input and output data. A test case
constitutes a sequence of states passed through in testing and a pair of
conditions in each state which must be satisfied by the input and output
data. AGENT automatically generates test cases from an FD.
AGENT has the following characteristics:

e Description of a function specification with an FD is easier than
with a boolean function alone because the order of input data need
not to be changed to satisfy the constraints needed for a boolean
function.

158 Japanese Perspectives in Software Engineering

o Criteria for test case generation are clear, and the number of test
cases generated is reasonable.

e Test cases are automatically generated from an FD.

This section presents the method used for generating test cases. It
explains FD notation and the generation algorithm, and it provides a
concise outline of the AGENT program.

7.2.2 Function diagram

Some studies have been carried out on the description of a functional
specification as a dependence between input and output data. A
cause—effect graph expresses the correspondence between input and
output data based on a boolean function and the interdependence
between input data owing to constraint conditions.

A functional specification of a program usually consists of a
dynamic specification and a static specification. The former expresses
the order of input data (or translation order); the latter, a correspondence
between input and output conditions. A specification that consists only
of a static specification is impractical because of the large number of
possible combinations. A dynamic specification must be used to simplify
the functional specification. A state transition model is suitable for

describing a dynamic specification. In a state transition model, the:

output data and subsequent state are determined by the input data and
the present state. A boolean logic model is suitable for describing a static
specification. In a boolean logic model, the output data is determined
only by the input data.

7.2.2.1 Function diagram notation

A function diagram is composed of state transitions and boolean
functions as follows:

State transition A state transition is described with states and tran-
sitions as shown in Figure 7.1.

e A state indicates a place (or time) wherein data is input. An initial
state is the starting point of activity and final states are possible end
points of activity.

e A transition indicates a change of a state. A state prior to transition
is called a tail state and, after transition, a head state. The boxed T
symbol over an arrow expresses a boolean function with a decision

~

7: Functional Testing and Structural Testing 159

O State
¥

O uniasae O—O T

O Fnastate

@ o &}

o
[~

Figure 7.1 State transition notation in function diagrams: (a) state;
(b) transition; (c) decision table or cause-effect graph.

table or a cause—effect graph. If the boolean function is simple, then
the input and output condition is written directly on the arrow.

Boolean function A boolean function in each state is described with a
cause-effect graph or a decision table as shown in Figure 7.2. Inter-
dependences between input conditions are expressed in terms of con-
straint conditions.

7.2.2.2 An example of a function diagram

Figure 7.3 is a sample function diagram representing the following
specification of a simplified automatic teller machine (ATM). State S3
represents the display ‘insert card’.

(1) The ATM displays ‘key in pass code’ when a cash card is inserted.

(2) The ATM checks the correspondence between the keyed-in pass
code and the code on file. If they are the same, the ATM displays

(g

) A A A
B>c >>c A—~—B >—>s
B B B
ifAandBthenC ifAorBthenC if not Athen B ifAorBthengotoS
b)
® input Cljy|lY Y: input condition is true
c2| YN N:inputcondition is false ©
output E[| [0 [R [
B2 [*] *te B B B B
S1 * false
state = exclusive inclusive oneand require
* only one

Figure 7.2 Boolean function notation in functional diagrams:
(a) cause-effect graph; (b) decision table; (c) constraint conditions.

160 Japanese Perspectives in Software Engineering

messages

M1: key in pass code

M2: key in sum

M3: key in pass code again
Mé: stop process

MS: insert card

Decision table: T

pass code = registration [Y | NN
mistaken = three times
M2 *
M3 *
M4 *
cancel card

S1 *
head

state |52 *
83 *

input

=4
<
4

output

sum < balance
sum>balance payment (money = sum)

T M2 report(balance — balance-sum)
card

@ - ®)

Figure 7.3 An example of a function diagram (ATM): (a) state
transition part; (b) boolean function part.

‘key in sum’; if not, the ATM checks whether the number of times
that the correct code has not been entered is equal to three. If so, the
ATM displays ‘stop process’, cancels the card registration, and
displays ‘insert card’ for the next customer. If not, the ATM displays
‘key in pass code again’.

(3) When an amount is keyed in, the ATM checks whether it is less than
or equal to the balance. If the amount is greater than the balance, the
ATM displays ‘key in sum’ and waits for the amount to be keyed in
again. If the amount is less than or equal to the balance, the ATM
pays the money requested, reports the balance and displays ‘insert
card’.

7.2.3 Method of test case generation
In generating test cases from an FD, it is important that the number of

test cases be practical and that the criteria for test case generation be
clear. An FD is composed of state transitions and boolean functions.

7: Functional Testing and Structural Testing 161

Myers [9] described a test case generation method for boolean functions
in which test cases are generated from a cause-effect graph. The criterion
considered for a state transition is the path testing strategy of programs
where a state is substituted for a node and a transition is substituted for a
branch.

Using clearly defined criteria, a practical number of test cases are
generated from an FD by combining test cases of state transitions (testing
paths) with test cases of boolean functions (partial test cases).

7.2.3.1 Test case generation criteria

Partial test cases which are generated from the boolean functions of an
FD include true and false cases of input data conditions; this constitutes
almost the minimum possible number of test cases. The number of test
cases increases linearly with the number of input data conditions.

There are many criteria for state transitions. Among these, pass-all-
states (CO coverage) and get-through-all-transitions (C1 coverage) are
well known. In programming, the case when a loop is bypassed is apt to
be overlooked and mistakes can be made concerning a loop termination
condition. Testing paths should include both a case of bypassing a loop
and one of getting through a loop in a state transition.

It is difficult to recognize all the loops of a typical state transition
but easy to recognize them in a structured state transition (SST) which is
composed of only three kinds of forms (for example, sequence, selection
and iteration, as shown in Figure 7.4(a)). Figure 7.5(b) shows an example

Sequence Selection lteration
a a
a
o| Iz | OO0 a>
expression
b
Regular X . *
© expression ab atb a
[[|]
9| g | (5 O ® 7
[a | [b | [a |

Figure 7.4 Notation for an SST.

162 Japanese Perspectives in Software Engineering

g
@@ g
®

O—@-®-@%

(©

Figure 7.5 An example of an SST and test paths: (a) state transition;
(b) SST; (c) testing paths.

of an SST corresponding to the state transition in Figure 7.5(a). There are
two loops in Figure 7.5(b): (S4, S5, S4) and (S4, S5, S3, S2, S4).

To test path generation, the test cases must pass all transitions of an
SST at least once, and they must include the cases of bypassing and

getting through a loop. Figure 7.5(c) is an example of testing paths which
satisfy this criterion.

7.2.3.2 Test case generation procedure
Test cases are generated from an FD by the following procedure.

(1) Generation of partial test cases. In each state, partial test cases are
generated from a cause—effect graph in which causes are input data
conditions and effects are output data or head states of the boolean
function. If a decision table is used to describe the boolean function,
it is translated to the equivalent cause-effect graph. A partial test

03

3

7: Functional Testing and Structural Testing 163

case is composed of a combination of cause values (input condi-
tions) and a combination of effect values (output data or states)
which corresponds to a combination of cause values. Only one of
the effects which correspond to the states should be true in each par-
tial test case.

Testing path generation. A state transition is translated to an SST
composed of the three forms in Figure 7.4(a) by means of a
translation from a transition matrix to an expression [10] composed
of the three operations shown in Figure 7.4(b). A testing path is
generated from the initial to the final state with the criteria in the
previous section always being satisfied.

Synthesis of test cases. Test cases of an FD are synthesized from the
testing paths and partial test cases in each state of the FD. They are
made up of sequences of states from the initial to the final states and
combinations of input data conditions and combinations of output
data in each state. In the synthesis algorithm, a partial test case is
assigned to a state of a testing path in which a head state of the par-
tial test case is the same as the next state of the assigned state in the
testing path.

7.2.3.3 Synthesis algorithm for test cases

An SST is expressed as described by the tree expression shown in Figure
7.4(c) for test case synthesis. A tree expression of an SST is called a condi-
tion structure tree (CST). The CST of the ATM is presented in Figure 7.6.

)

(2

(3)

Test cases are synthesized according to the following steps:

The number of partial test cases which have the same head state is
counted in each state, and the sum is set for the corresponding leaf
of the CST.

Each node of the CST is retrieved in post order, and the number of
test cases in each node is calculated according to the rules shown in
Figure 7.7.

Test cases are synthesized in numerical order from 1 to n where n is
the number of test cases in the root node of the CST, while test cases
are made up in each node from the children’s test cases.

A test case is composed of a sequence of tail states which are

extracted at the leaves and combinations of input conditions and output
data which are parts of the partial test cases at the leaves.

The numerals on the right-hand side of the CST node box in Figure

7.7 represent the number of test cases of each node. The ATM example
has four test cases. Each test case is described in Figure 7.8.

164 Japanese Perspectives in Software Engineering

Figure 7.6 An example of a condition structure tree.

(1) Sequence

j=max(1,i2, ..., i)

(2) Selection

j=il+i2+ .. +in

(3) lteration

i j=i+1

Figure 7.7 The rule for counting the numbers of test cases.

7: Functional Testing and Structural Testing 165

Test case 1
(empty)

Test case 2
@ (insert card)

@ not (pass code = registration code) and (mistaken = three times)

(3) (*-uncondition)

®

Test case 3

(insert card)

not (pass code = registration code) and not (mistaken = three times)

(pass code = registration code) and not (mistaken = three times)

(sum balance)

*

B<BO<«©E@<@<«<®

Test case 4

(insert card)

(pass code = registration code) and not (mistaken = three times)

(sum balance)

(sum balance)

*)

B<(@<©@<«©@<«<«®

Figure 7.8 An example of test cases.

166 Japanese Perspectives in Software Engineering
7.2.4 The AGENT program

The AGENT program, which automatically generates test cases from an
FD, was written in PL/I. The functions of the AGENT program and some
of our experiences with it are briefly described below.

7.2.4.1 Input and output

The input to the AGENT program is an FD which is written in FD
language. An FD is composed of a title statement (TITLE), state
statements (STATE), an initial state statement (INITIAL), a final state
statement (FINAL) and an end statement (END). In each state statement,
a boolean function is described with condition definitions (NODE),
boolean expression (RELATE) or decision table definitions (DECI-
SION), and constraint condition definitions (CONST).

The main output of AGENT is a table of test cases. A source list,
decision tables and a transition matrix can also be output. In test case
tables, a transition is composed of a tail state (TAIL) and a head state
(HEAD). Conditions (NODE) in the tail state are divided into those for
input data (I) and output data (O). Each test case is expressed in one
column of a test case table. A blank indicates that a test case did not get
through that transition, an ‘O’ indicates that a condition is true, and an
‘X’ indicates that a condition is false.

The first test case in Figure 7.8 did not get through any transition.
Since the ATM example has the same initial and final state (S0), the first
test case is a case of bypassing the loops at SO. The second test case gets
through a sequence of states (SO, S1, S3, SO) where, at each state, input
conditions are set and output data is checked. For example, at state S1,
the former are to key in an erroneous pass code and to iterate three times
to the error condition and the latter are to certify that the message ‘key in
pass code again’ is not output, the message ‘stop process’ is output, and
the card registration is cancelled.

7.2.4.2 Experiences with AGENT

Table 7.1 is a summary of AGENT applications. Numbers 1-5 are
experimental specifications for FD descriptions; numbers 6-11 are parts
of practical software. The following points have been deduced from the
data and user suggestions.

(1) Size of the FD. As shown in Table 7.1, the number of states is less
than 15. It is thought that this is due to the conventional notation
for describing a functional specification (natural language or state

_—

7: Functional Testing and Structural Testing 167

Table 7.1 Summary of experience

Number n L e e T
1 4 1.5 7 8 4
2 2 4.5 1 1 15
3 1 13.0 1 1 12
4 9 34 21 59 25
5 2 4.5 3 3 13
6 6 2.5 11 14 13
7 5 3.2 11 11 12
8 9 4.2 21 51 33
9 11 2.7 15 33 22

10 10 18.5 28 37 131
11 7 18.9 28 104 95

n, the number of states in a state transition diagram;
L, the mean number of input conditions;
e, the number of transitions;

" e, the number of SST transitions;

T, the number of test cases.

(2

3)

transition matrix etc.). Thus the limitation on the number of states
may be changed by using an FD. In our experience, when the
number of states is over 20, the FD cannot be readily grasped by
human operators.

The mean number of input conditions varies widely depending
on the software. In our experience with cause—effect graphs, the
number of conditions (input conditions, output data and head
states in an FD) is limited to 30-40. There is a problem in the deci-
sion table (which is induced to an FD to describe boolean functions)
in that the combination of conditions increases exponentially in
proportion to the number of input conditions. Thus the number of
input conditions at each state should be kept as small as possible.

Remarks on writing an FD. It is noticeably easier to describe the
ordered logic of a functional specification in an FD than in a
cause-effect graph. However, when states are created without much
thought, non-executable test cases are apt to be generated by
AGENT. Non-executable test cases are caused by inadequate
attention to state setting. Such cases can be solved by state
decomposition.

Effective use of the AGENT method. The AGENT method is
particularly effective because it allows detection of design errorsin a
functional specification by translating it to an FD. Even inexperi-
enced personnel are able to generate test cases with AGENT. The
following factors enhance the effectiveness of the AGENT program.

168 Japanese Perspectives in Software Engineering

e Description of an FD at the design stage. This is effective for
early detection of design errors. The FD review ensures that
development people will have a common understanding of a
functional specification.

e Use of inexperienced personnel for generation and execution
of basic test cases in functional test. This allows experienced
people to concentrate on cases not covered by the AGENT
method or on very special cases which are deduced by
experience and human intuition.

7.3 A structural testing tool
7.3.1 Essential branches for path testing

There are several methods and tools for structural testing. In particular, a
lot of attention has recently been paid to path testing. Path testing is
intended to execute all paths reaching from an entry to an exit on a con-
trol flow graph of a program. Practically speaking, a subset of paths are
selected and input data that will cause them to be executed is found. It
should be noted that branch testing, a form of simplified path testing, is
more practical because exact path testing often requires an enormous
amount of test data. A typical branch testing tool measures the ratio of
executed branches to all branches in a program. This coverage measure is
used to estimate the quality of a tested program with regard to the
correctness of program logic and to select test data by which unexecuted
branches are executed. This technique is used in many tools.

Conventional branch testing, however, has the following two
defects:

o Redundant test data is apt to be selected when conventional branch
testing is used for test data selection since there are many branches,
all of which are executed by many test data.

e Quality is overestimated when conventional branch testing is used
for quality estimation since the coverage rate increases rapidly when
the first group of test data is executed.

These problems result because all branches are treated equally and
can be avoided by paying attention to only those branches essential for
path testing. That is, if one branch is executed whenever another
particular branch is executed, the former branch is non-essential for path
testing. This is because a path covering the latter branch also covers the
former branch. Branches other than such non-essential branches will be
referred to as essential branches.

First of all, to present a method for differentiating essential

7: Functional Testing and Structural Testing 169

branches from non-essential branches, this section introduces a directed
graph, obtained from a control flow graph of a program by eliminating
arcs which correspond to non-essential branches. All arcs of this group
correspond to essential branches and are called primitive arcs. The
eliminated arcs are called inheritor arcs because these arcs can inherit
information about path coverage from primitive arcs. This graph is
called an inheritor-reduced graph. An algorithm transforming a control
flow graph into the inheritor-reduced graph is then presented.

Next, a new coverage measure, based on the number of essential
branches executed at least once by test runs of a program, is proposed,
and a tool for this new measure is developed. Then, through experiments
with this tool, it is confirmed that the new measure is more suitable for
test data selection than the conventional measure for branch testing,
since the number of branches to be considered decreases.

Finally, an algorithm for test data selection resulting in reduced
redundancy and an algorithm for eliminating redundancy in a selected
test data set by paying attention to only essential branches are presented.

7.3.2 Conventional method
7.3.2.1 Branch testing

In general, program testing is carried out by dynamic testing in such a
way that a program is executed with various input data and then each
result is confirmed. It is impossible, however, to test all possible input
data with this method. Therefore a finite test data set should be selected
so as to ensure a high quality of the tested program under the given time
and cost constraints.

Path testing is one technique for this purpose. The aim of this
method is to execute as many feasible paths from an entry to an exit on a
control flow graph of a program as possible. The coverage measure based
on this technique is as follows:

the number of executed paths
the number of all feasible paths in a tested program

Cpalh =

This measure, however, is not practical since the number of feasible
paths is enormous in most programs because of iterations. Therefore, for
practical purposes, attention is focused on a path component instead of a
path. This component, called the dd path (decision-to-decision path), is
defined as a partial path in a control flow graph such that (a) its first
constituent arc emanates from either an entry node or a decision box,
(b) its last constituent arc terminates at either a decision box or an exit
node and (c) there is no decision box on the path except for those at the

170 Japanese Perspectives in Software Engineering

two ends, where a decision box is a node with two or more exit arcs. The
coverage measure based on such dd paths is as follows:

_ the number of executed dd paths
' the number of all dd paths in a tested program

This technique is called branch testing because this measure promotes
the execution of all branches. This measure can be used for the following:

. To detect a lack of test data, and to select additional data so as to
reach unexecuted dd paths.

e To estimate the quality of a tested program, assuming that the
higher the measure, the higher the quality of the tested program.

7.3.2.2 Problems of the conventional method

For a demonstration of the first problem, consider the program in Figure
7.9 and the following test cases:

e (Case 1: logical predicates L, and L, are both true.
e Case 2: L, is true but L, is false.
e Case 3: L, is false.

There are five dd paths, a, b, ¢, d and e, in the control flow graph of this
program as shown in Figure 7.9. When case 1 is first executed, a, band d
are covered and C, is 3/5. After cases 2 and 3 are executed sequentially,
C, will become 4/5 and then 5/5 respectively.

if Ly
thenif L,
then S|
else S,
else S;;
S..

@ (©)

Figure 7.9 A program example: (a) source; (b) the control flow graph.

-

7: Functional Testing and Structural Testing 171

So:
repeat
S,
untilL; b
Sz
[
@ ()
Figure 7.10 A program example: (a) source; (b) the control

Sflow graph.

However, it is desirable that the coverage rate increases by 1/3 per
case when the measure C,y, Of essential paths is used, since there are
three paths in this program. The difference between the ways in which C,
and C,,;, increase is due to the fact that the non-essential dd paths for
path coverage, a and b, and the essential dd paths, c, d and e, are treated
equally. That is, the degree to which each case contributes to C; depends
on the execution order.

Consequently, when C, is used instead of Cp,,, the quality of the
tested program is overestimated. That is, when a coverage rate is less than
100%, C, is greater than the ratio of executed test data to all test data.

Next, consider another program, shown in Figure 7.10, and the
following test cases to demonstrate the second problem:

e (Case 1: L, is true.
e Case 2: L, is false the first time and true the second time.

Case 1 was first selected so as to include the dd path c. Then case 2 was
selected so as to include b. As a result, case 1 becomes redundant from the
path coverage viewpoint because case 2 includes all dd paths in the
program. As shown in this example, test data selection based on all dd
paths has the defect that redundant test data is apt to be selected. The
reason is the same as for the first problem; that is, all dd paths are treated
equally although the dd path b is essential for path coverage but paths a
and c are not.

7.3.3 The primitive arc concept
7.3.3.1 Primitive and inheritor arcs
In this section, the concepts of primitive and inheritor arcs in a control

flow graph are introduced to differentiate the essential branches from
non-essential branches described previously.

172 Japanese Perspectives in Software Engineering

O

Definition 1:

A program is transformed to a directed graph in such a way that a
node will correspond to a basic block [11] which is a sequence of
sequentially executed statements and that an arc will correspond
to control transfer between basic blocks. Each entry and exit is
transformed into individual nodes. This graph is called a control
flow graph and is denoted by G(N, A), where N is a set of nodes and
A is a set of arcs.]

In the remainder of this chapter, nodes are represented by lower-

case letters from the end of the alphabet, such as x, y or z, and arcs from x
to y are represented by (x, y) or lower-case initial letters of the alphabet,
such as a, borc.

O

Definition 2:

For each node x, let IN(x) be the number of arcs entering x and
OUT(x) be the number of arcs exiting from x. A node x with
IN(x) = 0 is called an entry node and a node x with OUT(x) = O is
called an exit node. []

Definition 3:

For any path from an entry node to an exit node, if the path
including an arc a always includes another arc b, b is called an
inheritor of a, and a is called an ancestor of b. This is because b
inherits information about the execution of a; that is, b is executed

whenever a is executed. |
Definition 4:

An arc which is never an inheritor of another arc is called a primitive
arc.]
Definition 5:

A directed graph with no inheritors is called an inheritor-reduced
graph. []

7.3.3.2 Elimination of inheritors

This section introduces several reduction rules that can be used to
eliminate inheritors from a directed graph.

O Definition 6:

Arcs incident to the same node in a path are called adjacent arcs. B

7: Functional Testing and Structural Testing 173

0O Theorem 1:
If there is an inheritance relation between two arcs which are not
adjacent, the inheritor has its adjacent arc as another ancestor. W

The proof is given in a previous paper [12].

O Definition 7:

For a node x, an arc (x, x) is called a self-loop. |
O Theorem 2:
A self-loop is a primitive arc. |

The proof is given in a previous paper [12].

O Definition 8:
A node y is called a dominator of a node x if all paths from an entry
node to x include y. A node z is called an inverse dominator of x if all
paths from x to an exit node include z. Let DOM(x) and IDOM (x)
be sets of dominators and inverse dominators respectively of x. An
algorithm for obtaining DOM(x) is detailed in [11]. An algorithm
for obtaining IDOM (x) is derived from the algorithm for obtaining
DOM (x) by inverting arc directions.]

The condition for an arc to be an inheritor will now be discussed in
view of the above considerations. From Theorems 1 and 2, it suffices to
consider whether an arc between different nodes is an inheritor of its
adjacent arc or not. The general form of such an arc is shown in Figure
7.11, where the broken line implies one or more arcs that may exist.

The condition for a to be an inheritor of b, ¢, d or e in Figure 7.11
will be examined by considering the following four cases.

b -
//
/
c 7
4 a
4 /’
/ I/le
e
s°d
,

Figure 7.11 General form of an arc and its two nodes.

174 Japanese Perspectives in Software Engineering

Case 1: a is an inheritor of b. A path passing through b necessarily

passes through a or ¢ because x is not an exit node. Therefore, a path

passing through b necessarily passes through a only if one of the

following conditions holds:

(1) Thereisnoc.

(2) There are one or more arcs ¢, and a path passing through ¢
necessarily returns to x. That is, x is an inverse dominator of
the drain node for c.

Case 2: a is an inheritor of ¢. The condition for this case is the same
as the second condition of case 1.

Case 3: a is an inheritor of d. A path passing through d passes

through a or e because y is not an entry node. Therefore, a path pass-

ing through d necessarily passes through a only if one of the

following conditions holds:

(1) Thereis noe.

(2) There are one or more arcs €, and a path passing through e
necessarily passes through y previously. That is, y is a
dominator of the source node for e.

Case 4: a is an inheritor of e. The condition for this case is the same
as the second condition of case 3.

The above four conditions lead to the following reduction rules for

the elimination of an inheritor.

O

Condition 1:
For a directed graph G(N, A),

X, VENAX#ZYA(X,Y)EA]

Reduction rule R1:
Under condition 1, if

IN(x) # 0ANOUT(x) = 1,

(x, y) is eliminated from A, and x and y are merged into one node as
shown in Figure 7.12(a). [|

With respect to the arc arrows in Figures 7.12 and 7.13, the bold line

is an eliminated arc, the fine line is another extant arc, and the broken
line implies one or more arcs that may exist.

O

Reduction rule R2:
Under condition 1, if

IN(y) = 1 AOUT(y) # 0

7: Functional Testing and Structural Testing 175

(x, y) is eliminated from A, and x and y are merged into one node as
shown in Figure 7.12(b). | |

0O Reduction rule R3:
Under condition 1, if

OUT(x)=2
and
x € IDOM(w) for Vwe {w|(x, w)e AA W # y}

(x, y) is eliminated from A, and x and y are merged into one node as
shown in Figure 7.13(a). [|

4
4

//
}-’
~ 7’ s
-~ /7 e
L » # >
’ . //
7/ /)
e
}.
(b)

(@
Figure 7.12 Applications of the reduction rules: (a) R1; (b) R2.

4
/

: =
¥ ¥)
rd ; * 4 i
¥ ¥ Ve

(@ ()

N\

Figure 7.13 Applications of the reduction rules: (a) R3 (x is an inverse
dominator of w); (b) R4 (y is a dominator of w).

176 Japanese Perspectives in Software Engineering

a

Reduction rule R4:
Under condition 1, if

IN(y)=2
and
ye DOM(w) for Vwe {w|(w, y) e AA w # x}

(x, y) is eliminated from A, and x and y are merged into one node as
shown in Figure 7.13(b).]

7.3.3.3 Reduction Algorithm

The algorithm for transforming a directed graph to an inheritor-reduced
graph can be given in terms of the four reduction rules R1-R4 as follows.

O

Algorithm 1:
For a given directed graph G(N, A), the following procedure is
executed.

(1) R1 is applied for any arc which satisfies the condition of R1.
(2) Step (1) is repeated until no further suitable arcs are found.
(3) R2 is applied for any arc which satisfies the condition of R2.
(4) Step (3) is repeated until no further suitable arcs are found.

(5) An inheritor mark is written on any arc (x, y) that satisfies the
condition of R3 if there is at least one arc without an inheritor
mark among the input arcs of x or among the arcs forming a
path from the output arcs of x to x except (x, y) itself.

(6) Step (5) is repeated until no further suitable arcs are found.

(7) An inheritor mark is written on any arc (x, y) that satisfies the
condition of R4 if there is at least one arc without an inheritor
mark among the output arcs of y or among the arcs forming a
path reaching inversely from the input arcs of y to y except
(x, y) itself.

(8) Step (7) is repeated until no further suitable arcs are found.
(9) Any arc with an inheritor mark is eliminated and the two
nodes on both ends of the this arc are merged into one node.

(10) Step (9) is repeated until no arcs with inheritor marks are
found. |

7: Functional Testing and Structural Testing 177

The following theorem assures us that this algorithm is correct and
optimal.

O Theorem 3:
The directed graph reduced by Algorithm 1 has the following
features.

(1) A set of paths covering all arcs in the reduced graph also covers
all arcs in the original graph.

(2) The number of arcs in the reduced graph is least among graphs
with the feature of (1).

The proof is given in a previous paper [12].

Although the order in which R1 and R2 are applied is unimportant,
the order of Algorithm 1 is such that R1 is prior to R2. This has the
following merits:

(1) Each arc in the reduced graph corresponds uniquely to a particular
arc in the original graph.

(2) Furthermore, each arc in the reduced graph corresponds uniquely to
a particular dd path in the original graph, since the corresponding
arc in the original graph is a branch arc whose source node has two
or more exit arcs.

Such corresponding arcs are called essential branches and the other
branch arcs are called non-essential branches in the original program.

For example, consider the control flow graph of Figure 3.2 in [11].
This graph is transformed to the inheritor-reduced graph by applying
Algorithm 1 as shown in Figure 7.14(a). The numerals in Figure 7.14(a)
. imply that an arc labelled with the number n is eliminated by the
reduction rule Rn. The other arcs labelled with p are primitive arcs in
Figure 7.14(b).

7.3.4 New coverage measure and its support tool

7.3.4.1 New coverage measure

In order to improve both the effectiveness and the efficiency of branch
testing, a new coverage measure C,,, instead of C}, is defined below on an

inheritor-reduced graph into which a program has been transformed by
Algorithm 1:

the number of executed arcs
the number of all arcs in the inheritor-reduced graph

Cor =

178 Japanese Perspectives in Software Engineering

@ b

" Figure 7.14 An example of the application of Algorithm I:

(a) a control flow graph; (b) the inheritor-reduced graph.

7.3.4.2 A tool for new coverage measure

The tool for the measurement of C,;,, SCORE, was developed and used
for comparisons between C, and C,. SCORE is applicable to Pascal
programs and is composed of the following four phases:

P1: a Pascal program is transformed to the control flow graph.

P2: the control flow graph is transformed to the inheritor-reduced
graph by Algorithm 1.

P3: an instrument code is embedded into any place in the source
program corresponding to any arc in the inheritor-reduced graph.

P4: the coverage rate C, and unexecuted essential branches are
printed out after the code-embedded program is executed.

7: Functional Testing and Structural Testing 179

7.3.5 Reduction of branches to be monitored

First, the number of branches to be monitored for C,, is compared with
that for C,. The following three programs written in Pascal are used for
this experiment with SCORE:

(1) PLO parser: the parser for the language PLO, whose source code is
given on pp. 314-19 of Wirth’s book [13].

(2) SCORE: the tool itself for C,,, whose four phases (P1, P2, P3 and
P4) are used separately.

(3) PARSE: a structure editor developed by our group [14].

= The PLO parser was selected to ensure objectivity and the others were
' selected as examples of rather large programs.

The overall result is shown in Table 7.2. Item 2 is the total number

of branches in a tested program,; all these branches are monitored when

Table 7.2 Reduction of branches to be monitored when applying Algorithm 1 to a
Pascal program

PLO SCORE SCORE SCORE SCORE
Tested programs parser (P1) (P2) (P3) (P4) PARSE Total

(1) The numberof 326 1375 1095 516 1052 6663 11027
executable ’
statements

(2) The numberof 136 582 533 230 553 2914 4948
branches (the
denominator
of Cl)

(3) The number of
eliminated
branches:

(a) using the 40 87 73 44 52 754 1050
R2 rule
(b) using the 5 104 113 18 131 138 509
R3 rule
(c) using the 10 48 49 11 47 148 313
R4 rule

(4) The numberof 81 343 298 157 323 1874 3076
essential
branches (the
denominator
of Cy)

The ratio of 0.60 0.59 0.56 0.68 0.58 064 0.62
@2

180 Japanese Perspectives in Software Engineering

C, is applied as the coverage measure for branch testing. Item 3 is the
number of branches eliminated as non-essential branches by reduction
rules R2, R3 and R4 in Algorithm 1. Table 7.2 omits the number of arcs
eliminated by reduction rule R1 because they have no relation to the
comparison between C, and C,. Item 4 is the number of essential
branches that correspond to arcs in the inheritor-reduced graph of a
tested program. Only these essential branches are monitored when C,,, is
applied. Therefore, this experiment demonstrates that the number of
branches to be monitored for branch testing is reduced to about 60% by
using C,, instead of C;.

As a result, this reduction implies the following advantages when
C,ris used for preparing additional test data so that otherwise unexecuted
branches will be executed:

s Effectiveness: the possibility of selecting redundant test data is less
because attention is only paid to essential branches.

e Efficiency: it is easier to select additional test data because the
number of branches under consideration is fewer.

7.3.6 Application to test data selection
7.3.6.1 Algorithms for test data selection

In order to decrease redundant test data from the path coverage
viewpoint, a new algorithm for test data selection is proposed on the basis
of the following policies:

. Consideration should be limited to arcs in an inheritor-reduced
graph, that is, to essential branches.

. Furthermore, arcs with less possibility of being included in the
execution paths of many test data should be given priority over arcs
in an inheritor-reduced graph.

O Algorithm 2:
The test data for a program is selected according to the following
procedure:

(1) Transform a control flow graph of the program to the
inheritor-reduced graph by using Algorithm 1.

(2) On the basis of this inheritor-reduced graph, select test data to
include as many of the following (in decreasing order of
priority) arcs as possible among those arcs not yet included in
the executed paths of selected test data:

-

¢ 7: Functional Testing and Structural Testing 181

° a self-loop;
. a backward arc [11];

e among sets of arcs from the same source node to the same
drain node, an arc chosen from a set which holds the
maximum number of arcs. |

Although this algorithm is not deterministic, it can be refined so as
to be deterministic by neglecting path predicates. However, such
automatic path selection is not practical since there is a tendency to select
infeasible paths. When this algorithm is used, the amount of redundant
test data decreases considerably.

Next, the effectiveness of Algorithm 2 is discussed. Step (1) is
reasonable because it is not necessary to pay attention to inheritors from

A=\ the path coverage viewpoint. In step (2), a self-loop and a backward arc
have high priority because the other arcs in a path that includes these
kinds of arcs have a high possibility of also being included in other paths.
For example, if there is a path including a self-loop and another path
excluding only the self-loop from the former path, all arcs, except the self-
loop, overlap in these two paths. Since a path including a backward arc
has a loop, all arcs, except the backward arc, in this path are apt to over-
lap with other paths also.

It is intuitively obvious that the third item of step (2) also has less
possibility of overlap and therefore must have the third priority. The
following two theorems are given to assist the understanding of this item.

O Condition 2:
For a directed graph G(N, A),

N={n,...,m} ,
(ni, nig))eA for i=1,...,k—1
(ni,n)¢ A for j#i+1

A~ IN(”]) =0
OUT(n,) = IN(n,-+,)22 for i = l, . e ,k -1
OUT(n)=0 []
Let A; be the number of (n;, n;+,) represented by a;;, . . . , a5, as shown in
Figure 7.15.

0O Theorem 4:
Under condition 2, the minimum possible number of paths
required to cover all arcs is

max (h;) | |

182 Japanese Perspectives in Software Engineering

an e an

Figure 7.15 A chain of nodes.

O Theorem 5:
Under condition 2, the maximum possible number of paths
required to cover all arcs is

k=1
D = 1) »

i=1

The proofs of these theorems are obvious and are therefore omitted.

7.3.6.2 Optimization of selected test data set

Software testing is important in the maintenance phase as well as in the
development phase because more than 70% of total software costs are
spent on maintenance. In particular, a test data set is executed more
frequently for the regression test in the maintenance phase. Therefore it
is desirable to eliminate redundant test data from the selected test data
set. A reduction algorithm based on an inheritor-reduced graph is given
as follows.

O Algorithm 3:
For a given program, its test data set D is reduced as follows.

(1
()

®

C))

&)

7: Functional Testing and Structural Testing 183

Transform the program to the inheritor-reduced graph
G(N, A) by Algorithm 1.

For all test data in D, obtain a set of arcs included in the
corresponding path p. Let A(p) be the set and P be a set of
paths corresponding to D.

Obtain a subset of P, from P as follows:
P, = {p|{L(a;) = 2 for Va,e A(p)}, Ip e P}

where L(a;) is the number of paths including a;.

Eliminate any path p,, satisfying the following condition from
P:

min{L(a;) for Va; e A(Pn)} = min{L(a;) for Va;e A(p)}
for Vp e P,

In addition, eliminate the test data corresponding to p,
from D.

Repeat steps (3) and (4) until P; becomes empty. [|

This algorithm, excluding step (1), can be applied to an original
control flow graph as well as to an inheritor-reduced graph. This
algorithm, however, is executed more efficiently because only primitive
arcs are treated.

7.4 Conclusions

A functional testing tool (AGENT) and a structural testing tool (SCORE)
have been introduced.

First, the AGENT method has been proposed for systematic test-
_ case generation for functional testing. The AGENT program automati-
cally generates test cases from a function diagram. Generated test cases
satisfy the following criteria for a function diagram which expresses a
functional specification:

(1) Each state includes true and false cases of input and output
conditions.
All transitions of a state transition are retrieved at least once, and

bypassing and getting through all loops in a state transition are
included.

(2

Experiences with the AGENT method and its program have shown it to

184 Japanese Perspectives in Software Engineering

be effective for standardizing test-case generation and simplifying test-
case management.

Second, a new coverage measure for branch testing was proposed
for more effective and efficient software testing. This measure is defined
by coverage of only essential branches, whereas the conventional
measure is defined by coverage of all branches. The essential branches
are defined so that full coverage of all essential branches will imply full
coverage of all branches.

The testing tool for this new measure was developed in order to
discriminate essential branches from non-essential branches and to
measure the coverage rate over these essential branches. By using this
tool, it is ascertained that the number of essential branches is about 60%
of all branches. v

As a result, the new measure had the following advantages in
comparison with the conventional measure:

(1) Avoidance of software quality overestimation;
(2) Prevention of redundant test data selection; and

(3) Efficient optimization of a selected test data set for redundancy
elimination.

Acknowledgements

The author wishes to express his gratitude to Dr. Jun Kawasaki for
providing the opportunity to conduct this study. He is also indebted to
Kenroku Nogi, Zengo Furukawa and Katsuyuki Yasuda, who developed
AGENT, for their invaluable technical assistance.

References and further reading

[1] Howden W.E. (1978). A survey of dynamic analysis methods. In
Tutorial: Software Testing & Validation Techniques, IEEE Catalog
No. EHO 138-8, pp. 184-206. New York: IEEE

[2] Chusho T. (1983). HITS: a symbolic testing and debugging system
for multilingual microcomputer software. In Proc. AFIPS NCC ‘83,
pp. 73-80

[3] Goodenough J.B. and Gerhalt S.L. (1975). Toward a theory of test
data selection. IEEE Trans. Sofiware Engineering, 1, 156-73

[4] Furukawa Z., et al. (1982). AGENT: automatic generation of test-
cases with cause—effect graphs. In Proc. 6th ICSE Poster Session

[5] Furukawa Z., et al. (1985). AGENT: an advanced test-case gener-
ation system for functional testing. In Proc. NCC 85, pp. 525-35

t»

7: Functional Testing and Structural Testing 185

[6] Howden W.E. (1976). Reliability of the path analysis testing
strategy. IEEE Trans. Software Engineering, 2, 208-14
[7] Miller E.F. (1977). Program testing: art meets theory. IEEE
Computer, 10, 42-51
[8] Huang J.C. (1977). Error detection through program testing. In
Current Trends in Programming Methodology, Vol. 2, pp. 16-43.
Englewood Cliffs NJ: Prentice-Hall
[9]1 Myers G.J. (1979). The Art of Software Testing. New York: Wiley
[10] Lanzarone (1982). G.A. Automatic functional test case generation
for real-time control systems. In Proc. 6th ICSE Poster Session
[11] Hecht M.S. (1978). Flow Analysis of Computer Programs. New
York: North-Holland
[12] Chusho T. (1984). Coverage measure for path testing based on the
concept of essential branches, J. Information Processing, 6, 199-205
[13] Wirth N. (1976). Algorithms + Data Structures = Programs.
Englewood Cliffs NJ: Prentice-Hall
[14] Chusho T., et al. (1983). A language-adaptive programming en-
vironment based on a program analyzer and a structure editor. In
Proc. IFIP ‘83, pp. 621-6

