7

248

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Performance Analyses of Paging Algorithms for
Compilation of a Highly Modularized Program

TAKESHI CHUSHO anDp TOSHIHIRO HAYASHI

Abstract—Previous works on paging behavior have mainly concen-
trated on procedures, not on data, This paper is an attempt to clarify
the paging behavior of data referenced by a newly developed language
processor, and theoretically analyze the performance of several page
replacement algorithms with no loss of generality.

The experimental analyses show that the optimum page size for
these data is small and locality is evident but not so high in comparison
with that for procedures, and that the efficiency of each replacement
algorithm can be ranked in descending order as LRU, simplified LRU’s,
and FIFO. On the basis of these results, the language processor is
improved.

The performance of algorithms is theoretically analyzed assuming
the existence of locality. The difference in performance between LRU
and FIFO is evaluated by the upper and lower bound functions and
proves to increase at low fault rate. The reason for the difference be-
tween LRU and simplified LRU's is analyzed by the period measure
for which information about recent references to pages is collected.
Thus, it is demonstrated that the performance of simplified LRU’s
is consistent with this measure and strongly depends on the reset

Manuscript received July 25, 1979; revised March 18, 1980.

T. Chusho is with the Systems Development Laboratory, Hitachi,
Ltd., Kawasaki, Japan.

T. Hayashi is with Omika Works, Hitachi, Ltd., Ibaraki, Japan.

timing of LRU-flags. These theoretical results are not limited to
compilation only.

Index Terms—Compilation, fault rate, locality, LRU, modular pro-
gramming, optimum page size, paging behavior of data, relative differ-
ence in performarce, replacement algorithm.

I. INTRODUCTION

ECENT new programming methodologies such as step-

wise refinement [1], [2] and data abstraction [3] make
a program highly modularized [4]. To compile such a module
separately, a processor must frequently refer to a lot of data
including information about other related modules. There-
fore, paging between main and auxiliary memories is required
for these data. .

There are two problems, however, when applying previous
studies [5]-[10] on page replacement algorithms to this case.
Firstly, most experimental analyses of paging behavior have
been performed on programs or procedures, not exclusively
on data, and almost nothing is known about the paging be-

‘ 0098-5589/81/0300-0248%00.75 © 1981 IEEE

CHUSHO AND HAYASHI: PERFORMANCE ANALYSES OF PAG[NG ALGORITHMS

havior of data. Secondly, comparison between practical re-
placement algorithms is based on empirical results and theo-
retical approaches have not yet been sufficiently researched.

With regard to the paging behavior of programs, Belady [6]
pointed out the nonlinear property that the average execution
interval was approximated by as* at small memory capacity,
where @ was constant for an individual program, s was the
memory capacity, and k=~ 2. As for data, on the one hand,
the relational database machine RAP [11] was designed as-
suming the existence of high locality. On the other hand,
empirical studies [12], [13] indicated the lack of locality in
the hierarchical database systems.

This paper analyzes the paging behavior of various tables
referenced by the compiler of SPL [14] supporting the afore-
mentioned modularization techniques, and clarifies character-
istics of data references with respect to optimum page size,
locality, and effect of several replacement algorithms.

Many replacement algorithms have been studied together
under reference strings and mathematical analyses have also
been done [9]. For example, Mattson [7] formalized the
stack algorithm such as LRU. Some theoretical analyses, how-
ever, remain to be done with respect to the difference in per-
formance between representative algorithms such as LRU,
simplified LRU’s, and FIFO. Although LRU and FIFO have
been investigated and compared in most experiments on
paging systems, their relation is not yet sufficiently known
because it is difficult to mathematically relate locality to
the FIFO algorithm. In this paper, the difference in per-
formance between LRU and FIFO is evaluated by the upper
and lower bound functions assumning the existence of locality.

Furthermore, simplified LRU’s are considered because these
algorithms are of practical use. They use LRU-flags instead of
an LRU stack and some computers support the manipulation
of these flags in hardware. However, full LRU is not practical
because of stack manipulation which requires extended time,
although this algorithm is suitable for references with locality.
Therefore, the reason for the difference between LRU and
simplified LRU’s is investigated by the period measure for
which information about recent references to pages is col-
lected. The relation between the reset timing of LRU-flags
and the performance of simplified LRU’s is discussed on the
basis of this analysis.

II. COMPILATION OF A MODULARIZED PROGRAM

The newly developed language, SPL [14], provides ample
and powerful facilities for modularization, top-down develop-
ment by stepwise refinement, data abstraction by encapsula-
tion of a data type and its operations, and structured coding.

One of the main original features is that a program hierarchy
is represented by separating declarations of common data from
procedures. That is, in SPL, there are two types of modules,
namely, an environment module and a process module. The
environment module is composed of declarations of variables,
constants, data types, etc., and constructs a tree structure as
shown in Fig. 1. The process module is a set of procedures
and is positioned under a suitable environment module as its
descendant.

For separate compilation of such a modularized program,
intermediate results of upper modules are stored in a library

249

A—T—(A)

8 ——1(8)

[+ [{]
cl ——(C1)
c2——(C2)
€3——(C3)

)] (D)
DI—— (D)
————D2—— (D2)
03——1(03)
ED‘)—(DM
05— (D5)

x : environment module
(x): process module

Fig. 1. Example of a hierarchically modularized program.

and are referenced at the time their descendant modules are
compiled. Therefore, compiling speed strongly depends on
the frequency of paging between main and auxiliary memories
for such data. In the next chapter, the paging behavior of
these data is analyzed.

III. EXPERIMENTAL ANALYSES OF PAGING BEHAVIOR
A. Method

Reference strings to data were stored in an auxiliary memory
while compiling the modularized program shown in Fig. 1,and
were analyzed later. These reference strings were partitioned
into the following three parts:

1) analysis of environment modules (ENV),

2) analysis of process modules (PROC),

3) generation of an object program (GEN).

The items of analyses are

1) frequency of reference to each depth of an LRU stack
and to each page in the virtual space; and

2) fault rates by application of such replacement algorithms
as LRU, FINUFO, FIFO, and FIVE.

LRU and FIFO are well-known. FINUFO (first in not used
first out) and FIVE are simplified LRU’s and use LRU-flags
of 1 bit and 5 bits, respectively, instead of an LRU stack.

In FINUFO, every page in the buffer has an LRU-flag which

is set at the time of reference to the corresponding page..

Some computers support this mechanism’ in hardware. At
a page fault, the buffer is cyclically searched for a page with
a reset flag starting from the page after the page loaded last,
and the page found first is paged out. During this search, the
set flags are reset. :

In FIVE, every page in the buffer has an LRU-flag of 5 bits
and the leftmost bit is set when the corresponding page is
referenced. At a page fault, the page which flag has the
minimum integer ‘value is paged out.and every flag is divided
by 2.

B. Page Size
Fig.2 shows fault rates of LRU for page sizes 128, 256, and

512 bytes. These results show that a smaller page size is better

under the fixed capacity of the buffer.

C. Locality

Locality is defined using the probability L (i) of reference
to the depth i of an LRU stack as follows:

i

250

0.06 1 J

Buffer size
(bytes) i i
QK/ .

X

yas

286 si2 286 Si2
Page size (bytes)

(a) ®) ©

Fig. 2. Relation between page size and fault rate. (a) ENV. (b) PROC.

(c) GEN.

0.04

Fault rate

0.02 1

AN

—

256 %12

TABLE I
FREQUENCY OF REFERENCE® TO EACH DEPTH IN AN LRU STACK
AND TO EACH PAGE IN VIRTUAL SPACE

——== —

(a) in an LRU stack

(b) in virtual space

depth freq. rate(s) order freq. rate(s)
1 18164 60.5 1 4903 6.3
2 5360 17.9 2 2271 7.6
3 1267 4.2 3 2148 7.2
4 1263 4.2 4 2055 6.9
5 1034 3.4 5 1616 5.4
6 447 1.5 6 1527 5.1
7 347 1.2 7 1036 3.5
8 236 0.8 8 783 2.6
9 212 0.7 9 682 2.3
10 127 0.4 10 572 1.9

*First 30 000 data references of PROC-job with 256 bytes/page.

LO>LG), i<j. ()

Observing the frequency distribution in the LRU stack as
shown in Table I-a, the high locality is indicated by the fact
that the frequency of reference to the top page is greater than

60 percent and the frequency of each page rapidly decreases
according to the depth of the stack.

D. Static Frequency Distribution

The frequency of reference to each page in the virtual space
was also measured and the b - 1 pages of the highest fre-
quency were excluded from paging. Such a partially preloaded
method [10], however, was less effective than LRU in our
experiments. The reason for this seems to be that the fre-
quency distribution in the LRU stack is sharper than that
in the virtual space as shown in Table I-aand b.

E. Performance of Replacement Algorithms

The four algorithms mentioned above were applied to the
reference strings and fault rates were observed. In almost
all cases, good performance was obtained in the descending
order of LRU, FINUFO, FIVE, and FIFO. Fig. 3 presents

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

0.1 4 W T
0.05- 1
e
e
~ 00! - .
3
o
L 0.008- . :
--~- FIFO
— FINUFO
-—— LRU
0.00) ——+—1 —
4 8 12 16 4 8 1216
Buffer size (kilo- bytes)
(@) (b) (c))
Fig. 3. Performance of paging algorithms. (a) ENV. (b) PROC.
(c) GEN.
g
[-°3
Q
[~
g ° ENV
5 * PROC
< 997 1 xocen
-]
Q
e 907
-]
2 20
2 X
2
- o0 t+——r—r—7 [,
b 002 004 002 004 002 004
[
2 -201 1, 1e
s
© Fault rate of LRU

(@) (b) ©
Fig. 4. Relative difference in performance for FIFO and simplified
LRU’s to LRU. (a) FIFO to LRU. (b) FINUFO to LRU. (c) FIVE
to LRU.

part of the results. Fig. 4 plots the relative difference in per-
formance for each algorithm to LRU, that is,

fault rate of each algorithm
fault rate of LRU

The following observations are made from these results.

1) FIFO is evidently less effective, especially at low fault
rate.

2) FINUFO shows comparatively stable performance and
the degradation to LRU is less than 15 percent.

3) FIVE is almost the same as FINUFO but is less effective
at low fault rate.

g(fLru) =)

IV. THEORETICAL ANALYSES OF RESULTS

A. Optimum Page Size

Our experiments demonstrated that a smaller page size was
better as shown in Fig. 2. The reason for this seems to be that
the probability of reference to the same data as the last refer-
enced data is much higher than the probability of reference to
neighboring data. That is, let p(y/x) denote the probability
that the location y is referenced directly after the location x,

CHUSHO AND HAYASHI: PERFORMANCE ANALYSES OF PAGING ALGORITHMS

and the characteristic of data references in compilation is rep-
resented as follows:

px/x)>>p(x tdy[x)>p(x td,[x), 0<d, <<d,,

©)]

in contrast with procedures in which optimum page size is
rather large because the probability of reference to a neighbor
is higher than that to the same instruction.

Optimum page size, however, cannot be determined from
Fig. 2 because the mapping table enlarges in inverse propor-
tion to page size [8]. The remainder of this section describes
how to determine the optimum page size.

When the size of the referenced data area is D and the page
size is s, the size of the mapping table with entry length a is
a(Dfs). This table shares with a buffer of the size B in an
available main memory of the capacity C, that is,

B +a(Dfs)=C. 4

Meanwhile, I/O time per one page between main and auxil-
iary memories is expressed as u +s/v by the average access
time u and the data transfer speed v, and thus I/O time ¢ per
reference is obtained as follows:

t(s,B)=(1 + w)(u +s/v) f(s,B)

where w is the write ratio and f'is the fault rate.

Consequently, the optimum page size will be s which mini-
mizes ¢ under the constraint condition (4). In our experi-
ments, the actual data of f(s,B) shown in Fig. 2 were used
to solve (5) and the optimum page size was obtained as 256
bytes.

)

B. The Relation Between Buffer Size and Fault Rate

The results shown in Fig. 3 were analyzed in detail and the
relation between buffer size and fault rate was approximated
as follows:

f®=Gv*, r=f, ©)
fB)=He™*®, f<f, Q)

where b is the number of buffer pages and values of parameter
sets (G, k, H, a, fo) are, respectively,

ENV: (0.14,048,0.058,0.035,0.04),
PROC: (0.40,0.90,0.068,0.050,0.03),
GEN: (0.34,0.58,0.065,0.066,0.18). ®)

Equations' (6) and (7) are observed from Fig. 5 and Fig. 3,
respectively.

The study mentioned previously [6] also reported that (6)
was true at the small memory capacity. The values of k, how-
ever, are different, that is, K <1 in our experiment but k ~ 2
in the previous work. This is because locality of data refer-
ences in compilation is not so high as locality of procedures.
This property has been observed in the paging behavior of a
Snobol compiler by Coffman [5].

C. The Comparison of FIFO with LRU

Theoretical analyses of replacement algorithms have been
conducted in previous works [6]-[10]. Comparison of
FIFO with LRU, however, has not yet been theoretically

251

0.5 o ENV

o

0.05 1

Fault rate

0.0l

Buffer size (pages)

Fig. 5. Performance of LRU at small memory capacity.

analyzed because it is difficult to mathematically relate lo-
cality to the FIFO algorithm. The remainder of this section
will prove, by evaluating the upper bound and the lower
bound, that the relative difference in performance between
the algorithms increases at low fault rate. This result will be
general except for the assumption of locality.

Let LRU and FIFO be applied to the same reference strings
and let Grry and Grpo denote sets of pages in the buffer,
respectively. The relation between Gy ry and Gy is given
by

GHFO =GLRU - {Ul’ Tt Uk} + {Vl, Tty Vk}a
0<k<b (9)
where U is only in Gy gy and V; is only in GFiro-

If a page fault occurs, the bth page in the LRU stack should
be paged out in LRU and the page ¢ loaded first should be
paged out in FIFO. The difference d of both fault rates is

equal to the difference in the summations for the reference
probability p of each page in the buffer as follows:

k k
d = frrFo - fLru =:Z p(U;) - 12 p(Vy)
=1 =1

+p(@)-L(®+1). (10)

Since ¢ is selected without regard to the position in the LRU
stack, p(q) must be the average of Ggypo defined in (9) as
follows:

1(5+2 k k
P@=3{3 L0~ T p@)+ 3 pop}. ap
i=2 i=1 i=l
Meanwhile, (1) implies
pWU)>p(Vp), 1<i,j<k. (12)

Therefore, substituting (11) and (12) into (10), the lower
bound of d is

1641
d>2 3 LE)-Lb+1).

i=2

(13)

Next, the upper bound is shown. In FIFO, let n, and n
denote the number of references to page x and the number
of references to any page, respectively, during the stay of

252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

page x in the buffer. The probability of reference to x is
given by

p(x)=ny/n. (14)

Since x is paged out after page faults have occurred b times,
the fault rate is given by

f¥iFo =b/n. @as)

Considering the behavior of only x, the fault rate is also
given by

friro = 1/(n, +1). (16)

Therefore, using (14), (15), and (16), the fault rate is given
by

fr1ro =1 - bp(x). a7

This implies that p(x) is the average of the probability of
reference to each page in the buffer.

In order to obtain the lower bound of p(x), we consider
how many steps x goes down in the LRU stack during its
stay in the buffer. If all b - 1 pages which have stayed in
the buffer at the time of loading x are referenced before their
page-outs, x will go down b - 1 steps in the stack. Since a
page fault occurs b - 1 times after that, x will go down b - 1
steps again. Therefore, the maximum number of steps is
2(b- 1) and p(x) is equal to or greater than the average in
the worst case shown as

> 5" 1 (18)
P@>5 > LO.
The fault rate of LRU is given by
b
firu=1- Y LG). (19)
i=1

Consequently, using (17), (18), and (19), the difference in
fault rates between LRU and FIFO is given by

b b 2b-1
d<) L@)-77—— 2 LGO. (20)
i=1 2b-1 i3

Substituting (13) and (20) into (2), it is ascertained that the
upper and lower bounds of the relative difference in perfor-
mance for FIFO to LRU are monotone decreasing functions
at low fault rate. The proof is presented in the Appendix.
This conclusion is consistent with our experimental results
shown in Fig. 4(a).

D. Performance of Simplified LRU’s

LRU is suitable for data references with locality but full
implementation of this algorithm is not practical because of
stack manipulations. Simplified LRU’s such as FINUFO and
FIVE are, however, of practical use. In our experiments, al-
though FIVE had more bits for an LRU-flag than FINUFO,
FINUFO was better than FIVE. This is because the perfor-
mance of simplified LRU’s strongly depends on the period
T for which information about recent references to pages is

collected. The remainder of this section will discuss the
importance of the reset timing of LRU-flags for simplified
LRU’s, by evaluating T for LRU, FINUFO, and FIVE.

The collection time T is simply defined as the number of
faults during the reference strings which determines the cur-
rent state of LRU-flags or an LRU stack, although it is more
natural to define T as the number of references during that
time. This definition of T does not lose generality because
T is a function of the fault rate and the number of faults is
equal to the product of the fault rate and the number of
references.

In the case of LRU, the state of the LRU stack is deter-
mined by the reference strings including recent faults of 5
times (proof omitted here), that is,

@n

In FINUFO, the state of the LRU-flags is determined by
the reference strings during only one cycle of search for a
reset flag as mentioned in Section III-A. The number of
faults during one cycle is equal to the number of reset flags,
that is,

Tiry =0.

22)

TriNyFo =1b

where r denotes the ratio of reset flags in the buffer.

Since the number of flags turned off is equal to the number
of flags turned on in the stationary state, the following equa-
tion is obtained:

bl-n . .

br f=ro(1-f)
where f is the fault rate and 7, denotes the probability that
the flag of a referenced page in the buffer was off directly
before referencing. The left-hand side is the product of the
fault rate and the number of flags turned off per fault. The
right-hand side is the number of flags turned on per reference.

Although ry cannot be arithmetically expressed, it must be
lower than 7 because of locality. Therefore, if 7 approximates
ro, (23) is substituted by

(23)

b(1-r) _

Tf <r(1-f). (24)
Consequently, using (21), (22), and (24),

Trinuro = TLru M (25)

21-1
Finally, the FIVE algorithm mentioned in Section III-A
explicitly indicates

Trve =5. (26)

Every collection time is plotted in Fig.6. T gy and TrinuFO
were evaluated by applying the parameter of ENV in (8) to
(6) and (7) because they depend on the degree of locality.
Furthermore, experimentally measured data for Tgynyro iS
also shown to compensate the theoretical approximation of
(24). The following two features are observed from this
figure. !

253
CHUSHO AND HAYASHI: PERFORMANCE ANALYSES OF PAGING ALGORITHMS

-]
g X
201 3
2 N\t
=2 \'trRu
3 - 3
29 ™ \,
2 FINUFO '\
L .,
] \.\
3 104 ~
¥
§ - TrIVE
c o b g e — e e 'i' -
° T FINUFO
Ly
£ 3
- o

T T T T T
001 002 003 004 005

Fault rate

#* : measured data
. theoretical lower bound

Fig. 6. The collection time of LRU-information for LRU and simplified
LRU’s.

1) The difference between Ty ry and the others increases
at a low fault rate.

2) Tenuro tends to be longer than Trpyg at a low fault
rate.

These features are consistent with the experimental results
shown in Fig. 4(b) and (c). This means that the performance
of LRU and simplified LRU’s strongly depends on T and that
the reset timing of LRU-flags is very important for simplified
LRU’s.

V. CONCLUSIONS

The paging behavior of data referenced by a compiler was
analyzed. This compiler translates a highly modularized pro-
gram based on recent new programming methodologies such
as stepwise refinement and data abstraction.

Experimental analyses have shown the following.

1) The optimum page size is rather small in comparison
with that for procedures, that is, 256 bytes.

2) Locality is evident but is less than that for procedures.

3) Each replacement algorithm is efficient in the descending
order of LRU, FINUFO, FIVE, and FIFO.

In order to confirm the experimental results, theoretical
analyses have been performed especially with respect to the
difference in performance between algorithms. Since only
locality was assumed, the following results are not limited
to compilation only.

1) The difference in performance between LRU and FIFO
increases at a low fault rate.

2) The performance of simplified LRU’s strongly depends
on the reset timing of LRU-flags.

On the basis of these results, the replacement algorithm
was changed from FIFO to FINUFO and the page size was
also changed from 512 bytes to 256 bytes in the second
version of the SPL compiler. Thus the fault rate was re-
duced by about 50 percent, that is, 202 percent by the
former and 28.7 percent by the latter.

APPENDIX

This section proves that the upper bound function gy and
the lower bound function g; mentioned in Section IV-C are
monotone decreasing functions at low fault rate. For reasons
of mathematical convenience, and with no loss of accuracy,
the continuous function / (x) is introduced as follows:

i
L(i)=_[1(x)dx, i=1,2,---. 27
-1

From the feature of L(i) expressed in (1), I(x) is character-
ized by

v
0<I(v)<v—_l;f 1xydx<lw)<1l, O0<u<uv.
“ .

(28)
Using (2), (19), and (20), gy is given by
2b-1
f I(x)dx-2b 1 1(x)adx
gu(f)= (29)
1- 1(x)dx
f; *)
and its derivative is obtained as follows:
b
b 2 1- f I1(x)dx
0
(1- [e &) eylde) =16) - —
2b-1
I(x)dx
- [preb - 1) - ———
2b-1
"1 1(d) j; 1(x) dx. 30)

From (28),
bl(2b-1)-1(2b-1)

the right-hand side of (30) > 1(b) -

2b-1
bl (b
2b()l_2b] {10)-126- 1)} >0. @31)
Since db/df < 0 from (19), consequently,
dgy/df = (dgy/db)(db/df) <0, ¢2)
This means that g; is a monotone decreasing function.
Next, using (2), (13),and (19), g;, is given by
b+1 ‘
3 1 Ix)dx-L(b+1)
g(f)= (33)

1 -j;b I(x)dx

~

-

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

and its derivative is obtained as follows:

b 2 1 b+1
(f l(x)dx) (dgL/db)={Ef l(x)dx—l(b+l)}
0 1

-{I(b)—% (1 = j;b :(x)dx)}+{z(b)~t(b +1)}

b
-{1 f 1(x) dx - l(b)}+l(b){1(b)—L(b+ 1)}.

0
(34)

From (27), the first factor of the first term, the first factor
of the second term and the third term in the right-hand
side of (34) are positive. Therefore, the right-hand side
must be positive if the second factor of the first term and
the second factor of the second term are positive. That is,

b 1 b
1—j; 1(x)dx>f(b)>-b—(—£ l(x)dx).

This sufficient condition is satisfied at b > 30, that is, at
f<0.01 in our experiments. Consequently, in this case,

dgy,[df = (dgy, /db)(db/df) <0.

Thus, g; is a monotone decreasing function at low fault
rate.

(35)

(36)

ACKNOWLEDGMENT

The authors are indebted to I. Nakata of Tukuba Univer-
sity, Y. Yoshizawa and T. Nishigaki of the Systems Develop-
ment Laboratory, Hitachi, Ltd., for invaluable technical as-
sistance, especially with respect to the paging behavior of
programs in virtual storage systems.

REFERENCES

[1] E. W. Dijkstra, “Note on structured programming,” in Struc-
tured Programming, O.-J. Dahl, E. W. Dijkstra, and C.A.R.
Hoare, Eds. New York: Academic, 1972, pp. 1-82.

[2] N. Wirth, “Program development by stepwise refinement,”
Commun. Ass. Comput. Mach., vol. 14, pp. 221-227, Apr.
1971.

[3] B. Liskov and A. Snyder, “Abstraction mechanism in CLU,”
Commun. Ass. Comput. Mach., vol. 20, pp. 564-576, Aug.
19717.

[4] T. Chusho and T. Hayashi, “Two-stage programming: Interac-
tive optimization after structured programming,” in Proc. UJICC
1978, pp. 171-175.

[5] E. G. Coffman and L. C. Varian, “Further experimental data
on the behavior of programs in a paging environment,” Commun.
Ass, Comput. Mach., vol. 11, pp. 471-474, July 1968.

[6] L. A. Belady and C. J. Kuehner, “Dynamic space-sharing in com-
puter systems,” Commun. Ass. Comput. Mach., vol. 12, pPp. 282-
288, May 1969.

7] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalua-
tion techniques for storage hierarchies,” IBM Syst. J., vol. 9, pp.
78-117, 1970.

[8] P.J. Denning, “Virtual memory,” ACM Comput. Surveys, vol. 2,
pp. 153-189, Sept. 1970.

[9] E. G. Coffman and P. J. Denning, Operating System Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[10] E. Gelenbe, “A unified approach to the evaluation of a class of
replacement algorithms,” JEEE Trans. Comput., vol. C-22, pp.
611-618, June 1973.

[11] S. A. Schuster, E. A. Ozkarahan, and K. C. Smith, “A virtual
memory system for a relational associative processor,” in Proc.
NCC 1976, pp. 855-862.

[12] 1. Rodrigues-Rosell, “Empirical data reference behavior in data
base systems,” Computer, vol. 9, pp. 9-13, Nov. 1976.

[13] S. W. Sherman and R. S. Brice, “Performance of a database
manager in a virtual memory system,” ACM Trans. Database
Syst.,vol. 1, pp. 317-343, Dec. 1976.

[14] T. Hayashi et al., “Top-down structured programming language
for real-time computer systems—SPL,” Hitachi Rev., vol. 26,
pp. 333-338, Oct. 1977.

—_—

Takeshi Chusho was born in Marugame, Japan,
in 1946. He received the B.S. and M.S. de-
grees in electronic engineering from Tokyo
University, Tokyo, Japan, in 1969 and 1971,
respectively.

He is a Researcher at the Systems Develop-
ment Laboratory, Hitachi, Ltd., Kawasaki,
Japan. Since joining the company in 1971,
he has worked on the design and development
of languages, compilers, and other software
tools. His current research interests include
programming methodology, language, and compiler, and software
testing.

Mr. Chusho is a member of the Association of Computing Machinery,
SIGPLAN, the Institute of Electronics and Communication Engineers
of Japan, and the Information Processing Society of Japan.

Toshihiro Hayashi was born in Osaka, Japan,
in 1945, He received the B.S. degree in engi-
neering (electronic communication) from Osaka
University, Osaka, Japan, in 1967.

Since 1967 he has been with Hitachi, Ltd.,
Ibaraki, Japan, where he is currently a Senior
Engineer. Since 1970 he has been in charge
of development of various software engineering
facilities such as programming languages and
systems, testing languages and systems, and
CAD systems for software production. He is
currently interested in the application of requirement engineering and
data base technology to industrial embedded computer systems.

Mr. Hayashi was an active member of International Purdue Work-
shop of Japan and is a member of Information Processing Society of

Japan.

