



Abstract—In recent years, many web applications are used in

various business fields. These web applications are often

developed on the basis of a framework with reusable

components. Furthermore, it is increasingly required that

business professionals build their web applications by

themselves. In this paper, a web application framework for

end-user-initiative development is proposed to support small

and medium-sized businesses. A web application is developed

first and the domain independent parts are extracted as a

framework. Then the web application is rebuilt with

component-based architecture for increasing the domain

independent parts and the web application framework is

completed. Finally a visual tool for designing a web application

without programming is developed and the realization of

end-user-initiative development is confirmed.

Keywords—End-User, Web Application, Framework,

Component-base, Visual Tool

I. INTRODUCTION

n recent years, many web applications are used in various

business fields. However, it is a big workload to develop

each web application from scratch. Therefore, it has become

more efficient to develop a web application on the basis of a

framework that provides a series of foundations [1].

Commonly, information systems or web applications have

been developed by technology experts, and used by a limited

audience. With the widespread use of personal computers and

workstations, it is increasingly required that business

professionals build their web applications by themselves [2]

[3].

Therefore, it has become important to quickly develop

small-scale web applications at a low cost which target the

small business sector and individuals responsible for business

professionals on a daily basis. With that viewpoint, we have

studied development and maintenance techniques that can be

led by business experts in their field operations [4].

II. TARGET AND APPROACH TO NON-PROGRAMMING

We propose an end–user-initiative framework to

accommodate frequent changes in service. The framework is

intended for small-scale web applications that are harder to

Jing Li is with the Software Engineering Laboratory, Graduate School of

Science and Technology, Meiji University, Japan.(e-mail:

libing_anne@hotmail.com).

Takeshi Chusho is with the Software Engineering Laboratory, Graduate

School of Science and Technology, Meiji University, Japan.(e-mail:

chusho@cs.meiji.ac.jp, phone: +81-44-934-7449).

secure the budgeting necessary to outsource. We aim to

enable business experts to build web applications using a

framework based on their business knowledge [5].

Thus, in order to develop and evaluate a web application

framework that can make an end-user build a web application

using a GUI modeling tool without any coding, we propose

the approach as follows:

■ Select the scrap exchange system as an exercise

application, and build it for a holistic view of software

development.

■Rebuild the exercise application using JSON[6] and

Ajax[7] technologies, and extract the components from the

exercise application, and design the API to connect the view

and the logic.

■Build a framework based on the extracted components.

■Develop a visual tool that can enable the end-user to

build the web application.

III. EXPERIMENTS AND RESULTS

A. The scrap exchange system

We have taken up the scrap exchange system as an exercise

because we acknowledge the existence of environmental

problems. IT technology is expected to be part of a

maintainable social realization, the saving of resources, and

the achievement of environmental preservation (Green-by-IT).

For example, because the scrap exchange shop is voluntarily

managed by a town association or a local self-governing body,

if a person working at the shop can build a website for the

scrap exchange easily, it will be expected to achieve the

Green-by-IT.

In our study, we assumed that the scrap exchange system

mediates those who offer a disused article, and those who

want to utilize it. By using the scrap exchange system, the user

can register, apply for, or retrieve the scrap information at a

PC terminal. Fig. 1 shows the page transition of the scrap

exchange system. The system is composed of 10 pages, and is

comprised of the following user experience:

■Register E-Mail address.

■Register and update the personal information of the user.

■Login to the scrap exchange system.

■Register and update the scrap information.

■Search the scrap information.

■Apply for a scrap.

A Web Application Framework for

End-User-Initiative Development with a Visual

Tool

Jing Li, and Takeshi Chusho

I

Fig 1. The page transition of the exercise application.

B. Architecture

A three-tiered architecture is used for this system and is

constituted of the presentation layer which offers a user

interface, the application layer which performs the processing

of an application, and the data layer which manages data. At

the implementation level, it respectively corresponds to a web

browser, an application server and a database server.

This system was designed to adopt the MVC pattern. The

roles of MVC are separated definitely. It corresponds to the

model holding the state of application, the view which

manages the display and output, and the controller which

receives an input and controls the view and the model

according to the contents of the input.

C. The experiments and results

In this study, we implemented 2 versions of the exercise

application for this experiment. Domain dependency was

measured for a major portion in the MVC pattern. In order to

build a system using a GUI modeling tool, it is necessary to

convert the GUI model to program source codes which have

domain-dependency. Therefore, it is ideal that the

implementation has low domain-dependency. Furthermore,

the portion which has domain-dependency should be easy to

convert from the GUI model.

The exercise application version 1

Version 1 was developed with a simple framework, the

EcoFW, based on JSP/Servlet model. Fig. 2 presents the

system architecture using the framework EcoFW. In EcoFW,

the logic class is bound to the URL from the client. The view

and logic are mapped by EcoFW, which plays the C role in the

MVC pattern. Additionally, the DAO pattern is adopted, with

the ability to facilitate the operation of the database. A

business-delegate design pattern is adopted and business logic

is processed in the Logic class. The view is written in JSP. In

Fig. 2, the solid lines indicate the domain-independent portion,

and the dotted lines indicate the domain-dependent portion.

In the domain dependence portion of version 1, one JSP

corresponded to one logic class. Moreover, the SQL was

created in advance, and was saved in the properties file.

Fig 2. The Architecture of our framework (Version 1).

Table I presents the domain-independent portion in the

implementation. Since the implementation of version 1 does

not have components, the source of jsp and java, which is

domain dependent, exists in large quantities. So, it is difficult

to convert the GUI modeling for the end-user into an

applicable domain-dependent portion.

Table I

Domain-independent part of version 1.

MVC Function Implement
Domain dependent/

independent

V

View definition

Jsp

dependent

View initialize dependent

M

Business logic

definition
SQL dependent

Business logic

processing
DbUtil independent

C Controller Servlet independent

The exercise application version 2

Through the development of version 1, we concluded that

for implementing a web application, certain specifications are

required as follows:

■Database design (business logic definition)

■Page layout (view definition)

■Business logic design (business logic definition)

■Data resources of a page layout (view initialization)

■Page transition figure (view definition)

Even if the GUI modeling tool is offered to the end-user,

these specifications need to be visualized and saved as some

kind of data model, like XML or JSON.

 A web application can be built by converting modeling

results into a source code or configuration file which can be

recognized by our framework. Therefore, for the conversion

we defined the domain-dependency of version 1 in the

configure file which is independent of the programming

language. If the configure file can be read by the framework, it

is impossible to realize a web application from the GUI

modeling by the end-user.

As for a small-scale system like the scrap exchange system,

the business logic is responsible for the exchange of

information between the DB and user interface, and relies on

the SQL statements. In version 1, most of the business logic is

understood to operate the DB with SQL statements.

Therefore, we can believe the definition of the business

logic can be modeled by the SQL statements. Of these, the

login function must be implemented as a common feature of

the framework.

In version 2, we strengthened the function of the framework

by modifying EcoFW to component oriented framework. It

can make us construct a project not by programming but by

defining the components and the SQL statements in the

configuration file.

Therefore, when a GUI modeling method is provided by a

visual tool, we can convert the GUI model to the

configuration file used in EcoFW. It is possible to build a web

system by using a GUI modeling tool for the end-user.

Fig. 3 shows the architecture of the framework in version 2.

The gray portion in Fig. 3 shows the framework EcoFW. In

version 2, the view control engine was developed on the client

side, which comprises Page-driver, Component-Driver and

Logic-driver. They work as follow.

Page-driver sends a request for getting the page definition

file to the server, which defines a group of the components of

the page.

After the Page-driver receives the response, the

Component-driver sends a request to the server for getting the

component definition file for each component one by one,

which is defined in page definition file. In fact, the content of

component definition file is a group of elements.

Fig 3. The architecture of the framework (Version 2).

After the Component-driver receives the response, it

creates the elements which are defined in component

definition file one by one. When these processes are

completed, a domain page is created dynamically as a GUI.

The domain page links to the CSS files for the style

information.

When the event is driven in the domain page, the Logic

-driver sends a request to the server to process the busses logic

module. After it receives the response as a result, the

Logic-driver reflects the result to the domain page. On the

server side, the business logic is processed by operating DB

with a SQL statement.

Fig 4. The structure of domain page (GUI).

Fig. 4 shows the domain page as an example. Next, we will

describe how the page is created and how the business logic is

processed in detail by the framework EcoFW.

In version 2, the part of the view is made into the

components, and defined to the configuration file of the JSON

model. In the configuration file, a page is defined by, and

constituted of a group of the components. There is a group of

the elements for each component. The next is the definition of

the domain page in Fig. 4, search page.

■The definition of search page(searchPage.json)

01 {"id":"goodlistPage",

02 "componentIDs":[

03 "headerComp",

04 "subTitleComp",

05 "searchComp"

06]

07 }

In the above definition, line 01 defines the page id. From

line 02, a group of the components are defined. In this page,

there are three components. Those are headerComp,

subTitleComp and searchComp. The serachComp component

is defined as follows:

■The definition of the searchComp component
 (searchComp.json, a part of is omitted)

01{ "id":"searchComp",

02 "elements":[

03 { "id":"typeLableElement",

04 "type":"lable",

05 "caption":"type:"},

06 { "id":"typeTextElement",

07 "type":"text",

08 "caption":""},

09 …

10 { "id":"searchButtonElement",

11 "type":"button",

12 "caption":"SEARCH",

13 "eventsList":[

14 {"name":"onclick",

15 "func":"F_CRUD",

16 "module":"search.select",

17 "params": " typeTextElement;titleTextElement",

18 "view":"searchResultTableElement"}

19]

20 },

21 …

22 { "id":"searchResultTableElement",

23 "type":"table",

24 "caption":""}

25]

26}

In the definition of the search component, a group of the

elements are defined. From line 02, one element has a unique

id and has the ―type‖ property. The value of the ―type‖

property is provided by the framework in advance. In line

06-08, a ―text‖ element for input is defined. In line 22-24, a

―table‖ element for displaying search result is defined. A

―button‖ element is defined in line 10-20.

These elements defined in the element group will be

created one by one by the Component-driver. The property

―eventsList‖ is defined in line 13, and an event ―onclick‖ is

defined in line 14-18.

In this case, when the button is clicked, the Logic-driver

sends a request to the server with the parameters. One of the

parameter is the ―module‖ which is defined in line 16. The

―module‖ parameter is the key of a SQL statement. It tells the

server which logic is processed. The other parameters are

defined in line 17, which are the search conditions. The Logic

engine gets the values of elements, which are defined in

―params‖ property and sets these as the request parameters.

The request parameters are sent as follow:

 [… moduel=search.select&typeTextElement=PC& …]

When it receives the response from the server, the logic

engine reflects the result to the element which is defined in

―view‖ property in line 18. The result is a JSON object and is

defined as follow:

■The definition of the result

01 { "result":"0",

02 "titles":["TITLE","TYPE",…,"UPDATEDATE"],

03 "records":[

04 ["NEC "," Note Book ",…,"2011-11-22"],

05 ["NEC "," Note Book ",…,,"2011-11-23"]

06]

07 }

 If it is success, the value of property ―result‖ will be ―0‖.

And the result data defined by property ―titles‖ and ―records‖

in line 02-06, which is set to the table element

―searchResultTableElement‖ in this case. The display of

processing the business logic is shown in Fig. 4.

D. Considerations

We built two versions of the scrap exchange system. The

version 1 performed the functions of the scrap exchange

business. We also knew the necessary specifications to build a

web system. Therefore, it was possible to decide the functions

of the visual tool support for the end-user. In addition, domain

independence was separated from the exercise application,

and created as a framework called EcoFW.

In version 2, we aimed to convert more domain dependence

into independence until it became a part of the framework.

Table II presents the domain-independent portion in the

implementation. In order to measure the domain

independency, we listed the detail functions based on the

MVC pattern as shown in Table I and Table II. As a result of

version 2, the domain independent functions were provided as

a part of the framework. Another result was that domain

dependence can be set up with the JSON model, the CSS

model, and the SQL statements. These are easier to read and

analyze than java, jsp, and javaScript of programming

language, and allowed us approach to the visual tool. As for

the business logic can be not played on the SQL statements,

we are considering to develop the logic components like the

function of sending email.
Table II

Domain-independent part of version 2.

M

V

C

Function Implementation

Domain

dependent/

independent

V

View definition
JSON file

Style sheet(CSS)
dependent

View initialize
Page-driver

Component-driver
independent

M

Business logic

definition
SQL dependent

Business logic

processing
DbUtil independent

C Controller
Servlet

Logic-driver
independent

IV. THE VISUAL TOOL

A. Design concepts

As the above mentioned, in order to assist the end-user, we

have proposed a visual tool that is a GUI modeling tool.

Before implementing the version 1 of the scrap exchange

system, we had designed external specifications. These are a

table definition document, a detailed design of the pages, the

page transition diagram shown in Fig. 1, and the SQL

statements for the business logic. As for end-user-initiative

development, the end-user needs to design the external

specifications of these by modeling a GUI. So the visual tool

needs to be equipped with three basic functions of

business-use DB creation, GUI specification design, and

business logic creation.

Fig. 5 shows the support system for the end-user. The right

part is the generated web application. The gray boxes in the

right part imply the above developed framework version 2.

The left part is the visual tool support application

development for the end-user. By using the visual tool, the

end-user designs a DB, GUI, and the business logics by

modeling. Modeling results will be kept in the JSON model,

the CSS model, and the SQL statements. The developed

framework runs applications by interpreting the JSON file

and the SQL statements.

Fig 5. Support end-user to build a web application.

Specifications were examined based on each function of

the visual tool. Fig. 6 shows the GUI specification of the

visual tool. Depending on the capabilities provided by the

visual tool, it consists of five pages of data modeling,

component creation, page creation, logic modeling, and main

page. The main page links to another four pages. The next

section describes the each function of the visual tool.

Fig 6. The page transition of the visual tool .

B. DB creation

When we built the scrap exchange system, a table was

created according to a management target. The tables were

created according to the target of user, scrap, and application.

At the same, the end-user needs to create these tables by using

the visual tool.

What is pointed out from 1 of Fig. 6 is the data modeling

page which performs data model creation. A data model is

connected to another data model to set for external reference

by a line. The tables are created on the DB for every data

model. If a data model is corrected, the table of

correspondence will also be corrected automatically. The

end-user needs to perform data modeling, before creating the

business logic.

Fig. 7 shows the data models of the scrap exchange system

according to the management targets, user, scrap and

application. By clicking the button of +P and -P, the end-user

Fig 7. The data models of the scrap exchange system.

can add and delete a column of the data model. The left of

column field is the name, and the right is the type. If the

column’s type is not inputted, it will be recognized as text type

by default. According to the data models in Fig. 7, three tables

will be generated into DB. Those are ―user‖, ―scrap‖ and

―application‖. In addition, the table ―application‖ refers to the

table ―user‖ by ―applyuser‖ column is foreign key. And, it

also refers to the table ―scrap‖ by the foreign key of the

―regid‖ column. The SQL statement is to create a table as

follows:

■The SQL statement of creating the table ―application‖ (a

part of is omitted)
CREATE TABLE application

(applyid text NOT NULL,

1 2

3 4

 …

 CONSTRAINT application_pkey PRIMARY KEY (applyid),

 CONSTRAINT application_fkey FOREIGN KEY (regid) REFERECES

scrap (regid)

 …)

C. Modeling GUI

The above mentioned page specification has defined the

information including the items, item attributes, display style,

an input/output, etc. When the end-user uses the visual tool, it

needs to create the components and the pages. The page is

composed of the components. The components are created by

incorporating the elements.

Component creation

Point 2 of Fig. 6 is the page where a component is created.

The end-user creates a component by dragging and dropping

the elements which are provided by the visual tool. However,

the visual tool only provides the template of the element. If

the attributes of an element are set up when creating a

component, the component turns into a domain component.

The domain component will be saved to a JSON file.

Currently, although the elements provided are restricted to the

exercise application, extendibility is held, and the element can

be added as necessary.

Fig. 8 shows the sample of creating the search component

which is also defined in the JSON file in chapter 3. In Fig. 8,

the search component is named searchComp. It consists of

two label elements, two textbox elements, a button element

and a table element. The end-user adjusts the size and the

position by dragging and moving the elements with the mouse.

The elements are saved to a JSON file which is named

searchComp.json. The format is similar to the introduced

JSON file in chapter 3. The element’s style information is

saved to a CSS file which is named searchComp.css.

Fig 8. The sample of creating the search component.

Page creation

Creating a page is pointed out by point 3 of Fig. 6. Here, the

above created components are listed. The end-user

incorporates these components and creates a page. In

addition, the addition of a component and the adjustment of

its position are performed by the operation of drag and drop.

A JSON file is created to save a page. When the application is

operated, the page is drawn by calling the JSON files of the

components and the pages.

Fig. 9 shows the sample of creating the search page which

is also defined in the JSON file in chapter 3. In Fig. 9, the

search component is named searchPage. It consists of three

components. They are named headerComp, searchComp and

searchSubTitleComp and listed in the components list. The

end-user adjusts the position by dragging and moving the

components with the mouse. The components of the page are

saved to a JSON file which is named searchPage.json. The

format is similar to the introduced JSON file in chapter 3. The

component’s style information is saved to a CSS file which is

named searchPage.css.

Fig 9. The sample of creating the search page.

D. Modeling business logic

For the business logics, the functions are divided into

validation, DB operation, page transition, and otherwise

navigation such as email transmission. In this study, we

decided to implement in two phases. In the first stage, we

implement the functions of the validation function, DB

operation, the page transition. Moreover, the functions of

domain dependence, such as email transmission, are added in

the 2nd step. In this paper, we only describe the first step.

What 4 of Fig. 6 points out is a page to create the business

logic. In this case, it aims at creating the SQL statement,

which takes charge of the exchange of the information

between user interfaces and database, setting up page

transition relation and checking input data. The end-user

needs to create a logic module for each event.

Generating the SQL statements for the business logic is

achieved by setting the reference between the data models,

and the relationship of the data model and GUI. The visual

tool can represent relationships between objects using lines,

and provide a set of access lines according to their

relationships.

At this stage, there are six types of access lines. These are

GD lines which represent the relationship between the data

model and the elements in the GUI, DD lines which refer to

the reference relationship between the data models, EM lines

which correspond between the module and the events, EP line

which point to the page transition, PP lines which point to the

pass parameters between two pages, and EV lines for

mapping of the input element and the validation function. In

the future, we will provide the access lines to support the

complex logic.

A SQL statement is created by setting up a relationship

between the GUI and the data model like Fig. 10. And all the

relations which the functional lines point out are held. The

framework described in Chapter 3 achieves page transition

and plays the business logic using the relationships and the

SQL statements which were held.

Fig. 10 shows the logic creation of search scrap. The

logic’s specification is the same as the search button in Fig. 4.

When the search button is clicked, the scrap table is searched,

and the records are displayed to the table. The type’s value

and the title’s value are used as the parameters.

Fig 10. The logic creation of search scrap.

In Fig. 10, the created searchPage is dragged to the page

area, and the created scrap data model is dragged to the data

model area. The logic module is named search.select. The

onclick event is selected, and pointed to the data model area

by EM line.

As for a column of data model, the attribute of I or O can be

set up. The attribute of I is a parameter for executing the

module. It is accessed from an element of GUI by GD line.

The accessed element’s value is used as a parameter. The O

attribute is an output column of executing the module. It is

accessed to an element of GUI by GD line. Therefore, the

SQL playing the logic in Fig. 10 is created based on the next

format;

■The format of the SQL
 SELECT

 O column, …

 WHERE

 I column = element’s value, …

 FROM data model

In the case of the logic including update, delete and insert,

other formats are applied.

As the same time the above SQL statement is generated,

input information, output information and module name will

be added to fill the JSON file of the searchComp component.

E. Considerations

When the specifications of this visual tool were examined,

they were designed to have extendibility. From this point, it

will be thought that more function can be achieved. Also, we

are examining the possibility of creating the element and the

SQL statement by the end-user alone.

V. CONCLUSION

As part of the study of a web application framework for

end-user-initiative development, we developed a web

application as an exercise application—the scrap exchange

system—and performed an evaluation and expressed

considerations.

We separated a domain-independent framework called

EcoFW from the version 1. In addition, we extracted more

domain independence from the version 2, and converted it

into our framework. In version 2, the domain dependence can

be set up with the JSON model, the CSS model, and the SQL

statements.

The visual tool was proposed based on the experimental

result of the version 1 and the version 2. We will evaluate it in

next stage.

REFERENCES

[1] I. Crnkovic, et al., Specification, implementation, and deployment of

components. Communications of the ACM, 45, 10(2002), 35-40.

[2] J. Sprinkle, M. Mernik, J. Tolvanen and D. Spinellis, Guest editors'

introduction: What kinds of nails need a domain-specific hammer?,

IEEE Software, 26, 4 (July/Aug. 2009), 15-18.

[3] A. J. Ko, R. Abraham, M. M. Burnett and Brad A. Myers, Guest

editors' introduction: End-user software engineering, IEEE Software,

27, 5 (Sep/Oct. 2009), 17-17.

[4] Feng Zhou and Takeshi Chusho: A Web Application Framework for

Reservation Systems and its Reusability Evaluation, Proc. The 2009

IAENG International Conference on Software Engineering (ICSE'09),

pp.1027-1032 (Mar. 2009).

[5] Jing Li and Takeshi Chusho: A Web Application Framework for

End-User-Initiative Development with Domain Knowledge, IEICE

The Technical Report Vol.111, No.282, Knowledge-Based Software

Engineering(KBSE) KBSE2011-39,19-24(Nov. 2011) (in Japanese)

[6] ―Ajax‖,http://ja.wikipedia.org/wiki/Ajax, (2011.7.27）.

[7] ―JSON‖, http://www.JSON.org/,（2011.7.27）

http://www.se.cs.meiji.ac.jp/%7Echusho/paper/0903shuICSE09.pdf
http://ja.wikipedia.org/wiki/Ajax
http://www.json.org/

