Knowledge-Based Software Engineering 102
A. Caplinskas, H. Pranevicius, T. Nakatani (Eds.)

Technologija, 2010

© 2010T. Chusho, N. Yagi. All rights reserved

VISUAL MODELING AND PROGRAM GENERATION
FOR END-USER-INITIATIVE DEVELOPMENT

Takeshi CHUSHO" and Noriyuki YAGI
Department of Computer Science, Meiji University, Kawasaki, Japan

Abstract. The development of Web applications should be supported by business
professionals themselves since Web applications must be modified frequently based on
their needs. This paper describes end-user-initiative application development based on
visual modeling and program generation. Visual tools are necessary for development of
Web applications with three-tier architecture of user interface, business logic and
database. Furthermore it is necessary that program codes are generated automatically
from simple description of business logic. These systems are implemented and the
effectiveness is confirmed.

Keywords. End-user computing, visual modeling, automatic program generation.

Introduction

The number of Web applications which end-users have access to has been increasing. Most
of these applications are developed by IT professionals. Thus, attempting to achieve
automation is limited to particular tasks which calculate profit over the development cost.
Furthermore, it is difficult to develop applications quickly. Primarily, Web applications should be
supported by business professionals themselves since Web applications must be modified
frequently based on users’ needs. Therefore, end-user- initiative development has become
important in the automation of end-users’ fulfilling their own needs.

There are several approaches for the end-user-initiative development. That is, the Ul-driven
approach makes it possible to develop applications for the Ul-centered front-end subsystems
easily. It is strengthened by using framework technologies. The model-driven approach makes it
possible to develop applications for the workflow-centered back-end subsystems easily. It is
strengthened by using a visual modeling tool. Furthermore, the form-driven approach must be
easier than the aforementioned two approaches for business professionals since they are
familiar with forms in daily work. It is strengthened by the form-to-form transformation and
Web service integration.

Terms for end-user computing (EUC) and papers on EUC often came out in 80’s. Some papers
describe definitions and classifications of EUC [7] or the management of EUC [2]. A recent paper
summarizes the trends of end-user development without IT professionals’ assistance [20].

There are some other works related to EUC. In the programming field, the technologies for
programming by example (PBE) [14] were studied. The PBE implies that some operations are

1
Takeshi Chusho and Noriyuki Yagi are with the Department of Computer Science, School of Science
and Technology, Meiji University, Kawasaki, 214-0033, Japan.
This work was supported in part by KAKENHI of Grant-in-Aid for Scientific Research.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 103

automated after a user’s intention is inferred from examples of operations. The non-
programming styles for various users including children and for various domains including
games were proposed. In the database field, the example based database query languages [19]
such as QBE (Query-By-Example) were studied. QBE implies that a DB query is executed by
examples of concrete queries. User-friendly inquiry languages were proposed in comparison
with SQL.

Our research target is different from these technologies and is for business professionals and
business domains. The user’s intention is definitely defined as requirement specifications
without inference as business professionals with domain expertise develop software which
executes their own jobs.

Therefore, this paper pays attention to a Web application in which the user interface is a Web
browser because most users are familiar with how to use the Internet. Furthermore, the three-
tier architecture is supposed, which has been popular recently. Generally, there are three
approaches corresponding to the user interface (Ul), business logic and database (DB). In our
studies, application frameworks, visual modeling tools based on components and form
transformation tools for Web service integration were developed for EUC. The tile
programming especially is tried to be used for description of the business logic.

This paper presents Web application development technologies in Section 1, issues on EUC in
Section 2, abstract forms and form transformation in Section 3, and modeling by tile
programming in Section 4.

1. Web Application Development

1.1. Basic Approaches

Our approach to Web application development is shown in Figure 1. The business model at
the business level is proposed by those end-users who are business professionals. Then, at the
service level, the domain model is constructed and the required services are specified. At the
software level, the domain model is implemented by using components. In this approach, the
granularity gap between components and the domain model is bridged by business objects and
application frameworks. The semantic gap between the domain model and end-users is bridged
by form-based technologies.

The approaches to the end-user-initiative Web application development methodologies
based on the three-tier architecture are classified into the three categories of Ul-driven, model-
driven and data-driven processes by first focusing on any one of the Ul (user interface), the
model (business logic) or DB. These approaches are described in this section.

1.2. A Ul-Driven Approach

Recently, a Ul-driven approach has emerged as Web applications are increasing. A typical
example of this approach is the Struts framework [1] which is an open source framework for
building Web applications in Java. The visual forms are defined first and then components for
business logic and access to the DB are defined. In this approach, it seems to be easier for the
end-user to define the Ul in comparison with definitions of the model or the DB.

104 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

[Business } End-user

(Business professional)

T - I
Semantic : | Abstract Forms
Gap '

’ Domain Model | -
(Service) . ..+ | Modeling |
v " 1(A;.u:uluc:a\tmn) cont N
Granularity 1 (Frameworks|
Gap : e
Components

['.. _Soﬂwarc “ (Business objects)

Figure 1. Technologies for end-user computing.

We have also been studying this approach for several years [5]. The Ul-driven approach is
proposed for the front-end subsystem based on CBSE (Component-Based Software Engineering)
[3], [8]. The systems are constructed by using Ul-centered frameworks [10] and agent
technologies [12]. The effectiveness of the Ul-driven process is confirmed through experiences
with the development of frameworks.

Business professionals define requirements for an application to be developed by using the
framework as follows:

1. Service definitions: Services at the counter are defined.

2. Form definitions: Forms for these services are defined with navigational information.

3. Registration: These form definitions are registered into the corresponding servers.

Intelligent navigation by agents is implemented in XML. The metadata for a window is
described in an RDF (Resource Description Framework) style. While forms are defined in HTML
in the conventional way, the semantics of forms are defined in RDF style also.

However, this framework for a service counter does not support the back-end subsystem
with the workflow and DB. When another framework for a reservation task such as a room
reservation system was developed, a visual tool for defining the DB table easily was developed
simultaneously. Although end-users can use this tool, the target DB table is limited to a simple
reservation table.

In our Ul (user-interface) driven approach, the forms are defined first and the framework is
used. The business logic depending on the application is defined by the form definitions. The
other business logic is embedded into the framework.

For example, the framework for booking was developed and applied to a meeting room
reservation system for our department. A total of 23 forms are developed in this system for
users and the administrator. Among them, 20 forms are dynamic Web pages which are defined
by our visual tool. The Ul transition diagram on the forms for users is shown in Figure 2. Almost
all functions are directly mapped into some forms. The functional sufficiency and the usability
can be evaluated and improved easily since all use cases are simulated on the forms and the Ul
transitions.

However, end-users may need an IT professional’s assistance for the Ul to be implemented in
JSP, components to be newly developed and a complicated DB management system.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 105

next
; return
Login Calendar | ok Selephon ok Confix.’matlon ok | System
list list message
logoul i return return
Eeserved ol System return
unit list tmessage
Periodical foi Confirmation | ol System Feturt
change reservation list message
password g
Password ok System return
change tmessage

Figure 2. An example of a Ul transition diagram.

1.3. A Model-Driven Approach

Around the 90's, object-oriented analysis and design (OOAD) technologies came out and have
become the major methodologies. Some of them match the waterfall model and others match
the iterative and/or incremental development process [11], [13]. In the OOAD methodologies,
the unified modeling language (UML) [18] is used for definitions of the system model. OOAD is a
model-driven approach. In addition, UML2.0 requires more rigorous definitions of models for
automatic generation of program codes based on the model-driven architecture (MDA) [17].

We have also been studying this approach for several years [4]. The model-driven approach
based on CBSE is proposed for the back-end subsystem which the main part is a workflow. Our
solution is given as a formula of “a domain model = a computation model.” This formula implies
that one task in a domain model of cooperative work corresponds to one object in a
computation model based on an object-oriented model. Therefore, it is not necessary for end-
users to convert a domain model into a computation model with application architecture. The
domain model is considered as the requirement specifications. This process requires necessarily
the fixed architecture and ready-made components such as business objects.

Our approach is different from most conventional object-oriented analysis and/or design
methods which need defining an object model on static structure of objects prior to a dynamic
model on interactive behavior among objects. At the first stage, the system behavior is
expressed as a message-driven model by using a visual modeling tool while focusing on
message flow and components. At the second stage, a user interface is generated automatically
and may be customized if necessary. Then the transition diagram of user interfaces is generated
automatically and used for confirmation of external specifications of the application. Finally, the
system behavior is verified by using a simulation tool.

This component-based development process was confirmed by feasibility study on a given
problem of the IPSJ(the Information Processing Society of Japan) sigRE group. The problem is
how to define requirement specifications for a program chair’s job of an academic conference.
A dynamic model was constructed while introducing eleven kinds of objects as shown in Figure
3. These objects are defined by drag-and-drop operations from the palette of icons. A message
between objects is defined by drawing an arrow from the source object to the drain object.

In addition, branch conditions are described in rule expressions. For example, in the
“produce” method of the CFP Production object, the following rules are described for branch
conditions:

106 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

e if Printer = yes then print;

e if CFP Distribution = yes then distribute;

Furthermore, simulation is executed for validation of the requirement definitions both on the
domain model and on the sequence diagram, while displaying traces of the message flows.

repeat

change
recister » |

CL|

end

istribute | Docurnent_E Ednorl

B o

EAE LISBlIAT) [ail_sending| |Paper_List

\Printen

Figure 3. An example of a domain model
1.4. A Data-Driven Approach

As for a data-driven approach, a data-centered or data-oriented approach was introduced in
the 80's. In this method, the data flow diagrams (DFD) are sometimes used for a definition of
the workflow. The data model is defined with entity relationship diagrams (ERD). In many
mission-critical applications, the DB design is the most important. Since data structures are
more stable than business logic, the data model is defined prior to business logic.

However, the design of a large-scale DB is difficult for end-users. In our Ul-driven approach
and/or the model-driven approach, it is supposed that DB components are used. As for a small-
scale DB, visual tools are introduced for defining the DB tables.

2. Issues on End-User Computing

In our experiences, sometimes end-users needed IT professionals’ assistance. It is difficult for
end-users to develop new components, to modify ready-made components for complicated
business logic and to implement user interfaces in JSP.

In the business world, the external specifications of application software are recently
considered as services as shown in keywords such as ASP (Application Service Provider), Web
service, SOA (Service-Oriented Architecture) and Saa$S (Software as a Service) [9], [15], [16]. Our
new approach to end-user computing is that end-users develop Web applications by service
integration for both the front-end subsystem and the back-end subsystem because end-users
consider their applications as a level of service, not as a level of software.

That is, the service counter is considered as a metaphor to describe the interface between a
service provider and a service requester for Web services. Such a service counter is not limited
to the actual service counter in the real world. For example, in a supply chain management
system, data exchange among related applications can be considered as data exchange at the
virtual service counter.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 107

Generally, the service counter receives service requests from clients as shown in Figure 4.
Forms are considered as the interface between them. That is, the following concept is essential
for our approach:

”One service = One form.”

A client A service counter Aservicerequester A service provider

(a) An actual service. (b) The Web service.

Figure 4. A service counter as a metaphor for Web service.

The integration of some individual Web services is considered as transformation from some
input forms into some output forms. Although most of these forms are not visual forms, end-
users can consider this form as a visual form for the requirement specification. Such a form is
called an abstract form in this paper. Since end-users can consider such Web service integration
as the workflow with visual forms which they are familiar with, IT skills are not required of end-
users.

Furthermore, our previous two approaches are unified by these concepts. The Ul-driven
approach with frameworks for front-end subsystems is considered as the special case that a
part of abstract forms are actually visual forms for interaction between the system and the
external world. The model-driven approach with visual modeling tools for back-end subsystems
is considered as the special case that the message flow is used instead of the form flow as the
workflow. That is, cooperative work at an office is expressed by using a form flow model with
the abstract forms.

3. Abstract Forms and Transformation

3.1. Form Transformation in XSLT

The desirable solution is that end-users can get application software by form definitions and
form-to-form transformation definitions. An application which generates individual examination
schedules for each student has been selected for applying our solutions to practical Web service
integration. Actually, the university supports the individual portal sites for each student. The
student gets the examination schedule in PDF and the individual timetable for classes in HTML.
In our experiment, an actual examination schedule in PDF can be transformed into an XML
document manually.

The target application generates an individual examination schedule for each student from
the individual timetable for classes and the examination schedule. The form transformation is
shown in Figure 5.

One input is the individual timetable for classes in HTML which is extracted from the
individual portal site for each student. This document includes information about subjects for
each student, that is, subject names, instructor names and class numbers. This HTML document
is transformed into an XML document by using the wrapping technology. The other input is the
examination schedule in XML, which includes information about subject names, instructor
names, dates and periods, and room numbers. These two XML documents are merged into the
individual examination schedule in XML format for each student.

108 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

Individual Exam.
Schedule

Exam. Schedule
Figure 5. Form transformation for Web service integration.

This individual examination schedule in XML is transformed into an HTML document which
can be displayed on the Web browser of each student. There are some conventional tools used
for this transformation. The XSLT stylesheet for this application is generated by using one of the
conventional tools.

The key technology of this system is the form-to-form transformation from two XML
documents into an XML document. The system administrator of this application is not an IT
professional but a clerk in the university office. Such an end-user does not have the ability to
perform programming, but needs to modify the system when the inputs change.

For the solution of this problem, basically, the procedure of this application is described in a
scripting language. Furthermore, a visual tool supports the end-user. The system generates the
XML document as the output by extracting classes which are included in the both input files.
The early opinions on this approach are described in detail in [6].

The basic merger transforms input abstract forms in XML into output abstract forms in XML
with simple business logic. Next, this merger is extended for dealing with complicated business
logic. As an example, we chose a system to advise students on graduation requirements. This
system advises a student to take specific subjects necessary for graduation from inputs of both
his/her school report and a manual on graduation requirements. The school report shows a list
of subjects and the credits the student has already completed. The manual shows conditions for
graduation, which are considered as complicated business rules. That is, subjects are
categorized into several groups which compose a hierarchy, where each category has individual
conditions.

For dealing with such complicated business logic, the multistage merger is introduced. In the
multistage merger, generally, the intermediate output, is transformed into the next
intermediate output. Finally, in this application, the seven stages were necessary for the
confirmation of conditions required for graduation.

3.2. Form Transformation by Mapping

One solution to the problem of the form transformation in XSLT is the form transformation by
mapping from input forms to output forms. The end-users do not need to learn XML and XSLT
technologies since they can define the form transformation procedure by only mouse
manipulations to relate items in input forms to items in output forms. After the definition of
this procedure, the form transformation from input forms into output forms is executed as
shown in Figure 6.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 109

| Input form ‘ | Output form| Input form Output form
S /

N
g~])
\ Transformation /

procedure

Figure 6. Form transformation by mapping.

For this study, a Web application for the reuse of laboratory equipment was selected. In the
School of Science and Technology which we belong to, a lot of secondhand equipment such as
PCs is thrown away although many of them can still be used. If the reuse site is open, the
available but unnecessary equipment is registered there and someone can find and receive the
reusable equipment easily. Therefore, our end-user initiative method is applied to this system
which has the following main functions:

e The donor registers the unnecessary equipment.

e The donor replies to the donee.

e The donee receives the equipment for reuse.

e The donee requests the necessary equipment.

e The donee inquires about the registered equipment.

e The donee searches a list of the registered equipment.

The user interfaces (Ul) and the Ul transition diagram are designed. The business logic is
specified by the form-to-form transformation (FTFT) with abstract forms. Figure 7 shows a part
of form flows and form-to-form transformations. The three forms of left-hand side are visual
forms for actual user interfaces corresponding to Login, Menu and List windows. The four forms
of the right-hand side are abstract forms for end-users support, which are not displayed visually
at the application execution time. Such an abstract form is used under construction of an
application by end-users. M:N of FTFT implies the transformation from M input forms to N
output forms. First three transformations are 1:1 and the last transformation is 2:1.

| — | ‘ Check
i ogin AP
i User 10 ‘ Uzer 1D
! (FTFT 1:4) Password
! Password !
| == 1 .
; AP
£ | el (/, LY Response
l 3 Uzer 1D
- User 1D (FTFT 1:1) \ [| User
3 == l result Mgt .
User | 1 ——=]
3 4 DB
i Y i AP

\ FTET 14y [N feas

1 Condit ion &% Item

e \ E - Mzt .
Uzer 1D i DB
e Response
% § z (FTFT 2:1) \ Yo it iz

Figure 7. A part of form-to-form transformations and database accesses.

110 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

The Login form is transformed into the abstract form of ‘Check’ and it is sent to the user
management DB. Next, the abstract form of ‘Response’ is transformed into the Menu form for
selection of the next operation. If the user selects a display of a list of the registered equipment,
the menu form is transformed into the abstract form of ‘Read’ and it is sent to the Item
management DB. Then two inputs of the Menu form and the Response form are merged and
transformed into the List form.

3.3. A Visual Tool for FTFT

A tool for defining the form-to-form transformation was developed. The user interface was
implemented in HTML and JavaScript. The generated procedure in XML is sent to the server and
stored there. The interpreter of this procedure in XML was implemented in Java.

Figure 8 shows an example of the form-to-form transformation. The input form and the
output form are displayed on the left-hand side. The palette with buttons for operation items is
displayed on the right-hand side. Whenever a column of forms or an operation item of the
palette is clicked, the order and the name of the clicked item are displayed below for
confirmation.

The transformation from the Response form into the Menu form in Figure 8 is defined as
follows:

1. Response.UserlD
EQUAL

3. Menu.UserID

4 INIT

5. Response.Result
6. EQUAL
7

8

9

FUNCf
INIT
. FUNCf
10. EQUAL
11. Menu.List
12. INIT

2

4 Tnput Forms *+

Response Abstract-Form

User 1D |

Result

** Dutput Forms %
Menu Form

User I |
List

Order Ttem

1 Fiesponse. UserID
2 EQUAL

3 Menu, UserID

4 NT

5 Response. Result
6 EQUAL

7 FUNGt

8 INT

3 FUNGt

10 EQUAL

11 Menulist

12 INIT
AT [

Figure 8. An example of FTFT by using a visual tool.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 111

The first four operations define that the value of the User ID column in the input form is
copied into the User ID column in the output form. The INIT operation implies the initialization
as the previous execution result is not used. Next, one of the functions of f, g and h is used for
complex business logic. That is, the following four operations define that the value of the Result
column in the input form is the input of the f function while clicking the mouse button in order
of {Response.Result, =, f, INIT}. The last four operations define that the output of the f function
is assigned to the Menu column in the output form likewise.

The body of the function, f, will be implemented in a scripting language later. The variables of
X, y and z are used for temporary stores of execution results.

4. Modeling by Tile Programs

4.1. Code Generation by Model Transformation

The best solution is that end-users can get application software by visual modeling which
defines forms and form-to-form transformation. Furthermore it must be easier for end-users to
develop Web applications if almost all forms are visual forms as actual user interfaces and form-
to-form transformations are user interface transitions.

Our model-driven approach with model transformation is shown in Figure 9. End-users
develop a Web application as follows:

1. A Web application model is defined by using a modeling tool.

2. The Web application model is transformed into a design model of a Struts2 model by a
model transformation tool.

3. The design model is transformed into Java codes of the Web application by a code
generation tool.

y Tilodel Code
M%del:}-ng Transformation Generation
e Tool Tonl
Y & & b |
App Lication Struts? Weh
Model Model AppEeation
(XML) (XML) (Java)

Figure 9. Model-driven approach.

4.2. Visual Modeling

For constructing the visual modeling tool, an event management system as a sample was
developed. The system has the main functional specifications of registration of a user,
registration of an event and recording of a reply to a request to the user for attending the event.
General components with respect to user interfaces and their transition relations such as form
widgets and link widgets were extracted from this application. The template commands for tile
programming were extracted also.

The Figure 10 shows the usage of the visual modeling tool in Japanese when a application for
a lending library is developed. The left side shows a palette of general components. The page at
the upper left is the top page of the application. The page at the lower left is the form for
register of a book. The page at the lower right is the form for definition of business logic of the

112 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

register of a book. The page at the middle is the form for announce of termination of a register
of the book. The page at the upper right is the form of database manipulation.

The top page is displayed when the Web application is initiated. The form for register of a
book is displayed when the link of the register of a book is selected at the top page. When the
properties of a book are entered and the button of “send” is clicked, the page for the business
logic is executed and the book information is registered to the database. Then the form for
announce of completion of a register of the book is displayed. The top page is displayed again
when the link of “return to Top page” is selected.

4.3. Business Logic in Tile Programming

One of main problems for end-user-initiative development is how to describe business logic.
In our past studies, some scripting languages and rules were tried. However, in these methods,
end-users are required to learn some programming concepts. Therefore, tile programming was
adopted for the visual modeling tool. The system prepares some templates for instruction
statements as shown in Figure 11. End-users construct the business logic by combining these
templates.

The lower right page in Figure 10 shows that business logic for book registration is described
by tile programming. For example, the bottom line of the form of database manipulation, which
is at the upper right in Figure 10, is labeled “Tile list.” When this line is clicked, the templates for
database manipulation are displayed as shown in Figure 11. The first template is the statement
of variable declaration. This template is dragged and dropped on the form of business logic for
book registration. Then the second template is the tile of a new book to be registered, and it is
dragged and dropped on the blank column of the previous statement for variable declaration.

‘4. Web Application Editor @ Web Application Editor | & *Web Application Editor S;s;

1[Iy select i -
IFnene index BookRegEnd Book
Burs || |Nod—vss S-S NSLTENTS
B e S— ; Rt
2 #| <p> m— +authar : ITFF
| e EopkFeeits! (im0 onk s + publisher : Z5F|
||o BEER L -2 &y
| \
1) Zdiantim \ G s
[pmoL— b ~ Bl
ECEGG) BookRegister PO
eATs b |
FL—AEAIAD BookRegisterLogic
| e = =
| o wml 1 Lt e
& brama| author pub\isherl
| 123 25 (L tres [o |2m. |momEsen. [Fimdr—sa. |
| SixFREgEcE
BT D51 IDIE Bock (DR 2/x 71 | Dbname— [Bramd 71|
&
RO |Bok AT =5 | bname— [t L7
LA
e FEERT |Bok DEEEATE= 5 |obname— [publshalZF 21 |
| A=—s00-—%0
| e Bock DRIz o0 | 21570
| |§E
F_,.,zgmaeﬂw) =m0l

Figure 10. A Web application model by using the visual modeling tool.

Next, the seventh template is the statement of access to data in the database, and it is
dragged and dropped below the statement for variable declaration. This template is displayed
as “[__] <-[__]” and it implies that the right-hand value is assigned into the left-hand variable.
Therefore, after the variable declaration statement is clicked, the left-hand blank column of this
template is clicked. Furthermore, after the first parameter of the parameter list of “bname,”

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 113

|

| gwmfsiq;m%@mﬁ;emgﬂwm

[BLL Bock T — 503 502 1|
[Bookizt = b | DRARTEA S = SR |

e e | PR B e I |
DIDEHE

Dbname(23F3

il
i

(Tbnames—

Dauthor(32551

A

|
;

Mauthor—

ERTE0

[[EEFED

[Eerrmmmr—or

[e R e P e e e e e |

5
g

Figure 11. Templates for tile programming (in Japanese).

“author” and “publisher” is clicked, the right-hand blank column of this template is clicked. This
statement implies that the title of the new book, which is passed from the form for register of a
book at the lower left in Figure 10, is assigned into the new record of the BOOK database via the
form of database manipulation at the upper right in Figure 10.

4.4, Model Transformation Tool

The Web application model which the end-user defines by using the visual modeling tool, is
independent of the particular platform or the particular architecture and is described in a
logical level. Therefore, the Web application model is transformed into the design model under
the condition of the particular platform of the Struts 2 framework by using the model
transformation tool.

Examples of mapping from the Web application model to the Struts 2 model are shown in
Figure 12. Some of them are simple as one page is mapped into one JSP document. Others are
complex as the business logic is mapped into Java classes and a Struts.xml document. This
transformation program is described in XSLT since the both models are stored in XML in the
system.

4.5. Code Generation Tool

The code generation tool generates the source codes for the application, which include Java
classes with class names, properties and methods, and JSP files. On the other hand, a set of files
which are common to Web applications, are not included in the design model, and are
appended to the source codes by the code generation tool.

114 T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development

Web Application Madel Struts2 Mode|

Page — JSP

Link R <a href="...
N

Fort N <siform ...
Text input <s:textfield ..,
Send Button ————* <s:isubmit...
b ————— .- -4,-‘.
- —

—lava Class (Action)

Logic 5 dhe—
'%ﬂva Class (Model)

DB Table =====2=mS e e e
\W- DB Table Model

Struts.xml

Figure 12. Mapping from the Web application model into the design model.
4.6. Feasibility Study

This visual modeling tool was applied to a library management system development [21]. The
main functions are register and deletion of a member, register and deletion of a book, lending
and return of a book, and a display of a list of book.

The Web application model is composed of 25 form definition pages, 8 business logic
definition pages and 3 database table definitions. It is confirmed that it is easy for end-users to
construct the Web application model.

Conclusions

The end-user-initiative application development approaches based on visual modeling and
program generation were studied for Web applications with three-tier architecture of user
interface, business logic and database. Based on results of the Ul-driven approach and the
model-driven approach, the form-base approach was tried. Furthermore, the modeling by tile
programs was developed for easy description of business logic. The systems were implemented
and the effectiveness was confirmed.

References

[1] The Apache Software Foundation, Struts. [Online] Available from: http://struts.apache.org/ [Accessed
16 April 2010].

[2]). C. Brancheau, and C. V. Brown. The management of end-user computing: status and directions, ACM
Computing Surveys, vol.25, no.4, 437-482, 1993.

[3] A.W.Brown(Ed.). Component-based software engineering. IEEE CS Press. 1996.

[4] T. Chusho, H. Ishigure, N. Konda, T. lwata. Component-Based application development on architecture
of a model, Ul and components, Proc. APSEC2000, IEEE Computer Society, pp.349-353, 2000.

[S] T. Chusho, H. Tsukui, K. Fujiwara. A Form-base and Ul-driven approach for enduser-initiative
development of Web applications. Proc. Applied Computing 2004, IADIS, pp.1I/11-11/16, 2004.

[6] T. Chusho, R. Yuasa, S. Nishida, K. Fujiwara. Web service integration based on abstract forms in XML
for end-user initiative development. Proc. The 2007 IAENG International Conference on Internet
Computing and Web Services(ICICWS'07), pp.950-957, 2007.

[7] W. W. Cotterman, and K. Kumar. User cube: A taxonomy of end users. Communications of the ACM,
vol.32, no.11, pp. 1313-1320, 1989.

T. Chusho et al. / Visual Modeling and Program Generation for End-User-Initiative Development 115

(8]
[9]
(10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
(18]
(19]
[20]

[21]

I. Crnkovic, et al. Specification, implementation, and deployment of components. Communications of
the ACM, vol. 45, no. 10, pp.35-40. 2002.

A. Elfatatry. Dealing with change: components versus services. Communications of the ACM, vol. 50,
no. 8, pp. 35-39, 2007.

M. Fayad, D. C. Schmidt, (Ed.). Object-oriented application frameworks. Communications of the ACM,
vol.39, no.10, pp. 32-87, 1997.

J. Jacobson, et al. The Unified software development process. Addison-Wesley, 1999.

N. R. Jennings. An Agent-based approach for building complex software systems. Communications of
the ACM, vol. 44, no. 4, pp.35-41, 2001.

C. Larman. Introduction to object-oriented analysis and design and the unified process. Prentice-Hall,
2002.

H. Lieberman, (Ed.). Special issue on programming by example. Communications of the ACM, vol.43,
no.3, pp.72-114, 2000.

T. Margaria, (Ed.). Guest editors' introduction: Service is in the eyes of the beholder. IEEE Computer,
vol. 40, no. 11, pp. 33-37, 2007.

0. Nano, A. Zisman, (Ed.). Guest editors' introduction: Realizing service-centric software systems. IEEE
Software, vol. 24, no. 6, pp. 28-30, 2007.

OMG. OMG model driven architecture. [Online] Available from: http://www.omg.org/mda/ [Accessed
16 April 2010].

OMG, Unified modeling language. [Online] Available from: http://www.uml.org/ [Accessed 16 April
2010].

G. Ozsoyoglu, H. Wang. Example-based graphical database query languages. IEEE Computer, vol.26,
no.5, pp.25-38, 1993.

A. Sutcliffe, N. Mehandjiev. (Guest Ed.). End-user development. Communications of the ACM, vol.47,
no.9, pp. 31-32, 2004.

N. Yagi and T. Chusho, A method for Web application development by end-users based on model
transformation (in Japanese). IPSJ SigSE Technical Report 2009-SE-163, p.81-88, 2009.

	PREFACE

	Table of
contents
	INVITED SPEAKER’S
SECTION
	USING KNOWLEDGE IN MODEL BASED SOFTWARE
DEVELOPMENT

	KNOWLEDGE BASED REQUIREMENTS
ENGINEERING
	ACTOR DECOMPOSITION RULES BASED ON GOAL DEPENDENCY

	INFERRING REQUIREMENTS MATURATION TYPES WITH A DECISION
TREE

	DATA MINING, KNOWLEDGE DISCOVERY, DIAGNOSIS AND PREDICTION

	PREDICTING COMBINATORIAL PROTEIN-
PROTEIN INTERACTIONS FROM PROTEIN EXPRESSION DATA BASED ON CORRELATION COEFFICIENT
	AN APPLICATION OF GROWTH CURVE MODEL FOR PREDICTING CODE CHURN IN OPEN SOURCE
DEVELOPMENT
	KNOWLEDGE-
BASED SYSTEM FOR DECISION MAKING SUPPORT AT DIAGNOSING OF THE ARTERIAL HYPERTENSION
	HOW TO FIND OUT THE LATENT THREATS IN
SOFTWARE
	A DEVELOPMENT RECORD SYSTEM THAT CAN DEAL WITH MULTIPLE DEVELOPMENT STAGES

	FORMAL METHODS, AUTOMATIC GENERATION AND APPLICATION OF
LOGIC
	APPLICATIONS OF FINITE LINEAR TEMPORAL LOGIC TO COMMUNICATION
PROTOCOLS
	Speeding up Method of Inductive Logic Programming System using Linguistic
Bias
	MODELLING OF MOBILE AGENT SYSTEMS USING DYNPLA
APPROACH
	AUTOMATIC CONVERSION OF SQL STATEMENT INTO CLAMSHELL
DIAGRAM
	VISUAL MODELING AND PROGRAM GENERATION FOR END USER INITIATIVE DEVELOPMENT

	ONTOLOGY BASED
ENGINEERING
	HUMAN ROBOT INTERACTION BASED ON WIKIPEDIA ONTOLOGY AND ROBOT ACTION
ONTOLOGY
	REPRESENTING AND VALIDATING METAMODELS USING OWL 2 AND
SWRL
	SUPPORT FOR EXTERNALIZATION OF INTELLIGENCE SKILL USING ONTOLOGY AND RULE BASED
SYSTEM

	KNOWLEDGE MANAGEMENT FOR BUSINESS PROCESSES, WORKFLOWS AND ENTERPRISE
MODELLING
	INCREMENTAL VERIFICATION OF CONSISTENCY PROPERTY OF LARGE-
SCALE WORKFLOWS THAT CONTAIN PASSBACK FLOWS
	KNOWLEDGE BASED COMPILER WITH E-TA FOR SOFTWARE ENGINEERING
EDUCATION

	KNOWLEDGE BASED SOFTWARE DEVELOPMENT
METHODS
	A METHOD OF SCENARIO RETRIEVAL USING SIMILAR INFORMATION OF
SCENARIOS
	SEMANTIC MANIPULATION OF NON SEMANTIC/NATURAL-
LANGUAGE QUERIES
	METHOD OF GUI LAYOUT ARRANGEMENT ALONG WITH USER INTERFACE
GUIDELINES
	INFORMATION SYSTEM IMPLEMENTATION APPROACH USING CONCEPTUAL DATA MODELING AND RESPONSIBILITY-
DRIVEN DESIGN
	A KNOWLEDGE-BASED SYSTEM FOR SOFTWARE
SPECIFICATION

	KNOWLEDGE-BASED DEBUGGING AND
TESTING
	A METHOD FOR EXTRACTING TEST CASES FROM A BASIC DESIGN
DOCUMENT
	TOWARD MODEL-BASED DEBUGGING OF SPREADSHEET
PROGRAMS

	KNOWLEDGE-BASED METHODS AND TOOLS FOR
EDUCATION
	KNOWLEDGE-BASED COMPILER WITH E-TA FOR SOFTWARE ENGINEERING
EDUCATION
	METHOD FOR DESIGNING A ROLE-
PLAY SCENARIO BASED ON UML AND EVALUATION OF ITS EDUCATIONAL EFFECT
	A PHILOSOPHY-BASED DISCUSSION ON KNOWLEDGE ARCHITECTURE FOR EDUCATING INTERDISCIPLINARY ENGINEERS IN THE SOFTWARE DEVELOPMENT
INDUSTRY
	A PROGRAMMING LEARNING ENVIRONMENT "AZUR" : VISUALIZING BLOCK STRUCTURES AND PROGRAM FUNCTION
BEHAVIOR

