
Modeling by Form Transformation for End-user Initiative Development

Takeshi CHUSHO and Noriyuki YAGI
Department of Computer Science, Meiji University

chusho@cs.meiji.ac.jp

Abstract 2. Previous studies on end-user computing
The development of Web applications should be

supported by business professionals themselves since
Web applications must be modified frequently based
on their needs. This paper describes end-user initiative
application development. The abstract forms are
considered as interfaces of services based on the
simple concept that “one service = one form.” Web
service integration can be defined as form
transformation from input forms into output forms.

The term of end-user computing (EUC) often came

out in 80’s. A paper summarizes trends of end-user
development without an IT professional’s assistance[6].
In the programming field, the technologies for
programming by example (PBE)[3] were studied. The
PBE implies that some operations are automated based
on a user’s intention inferred from examples of
operations. In the database field, the example based
database query languages[5] such as QBE (Query-By-
Example) were studied. QBE implies that a DB query
is executed by examples of concrete queries.

1. Introduction

Our research target is for business professionals and
the business world in general. Furthermore, the user’s
intention is clearly defined.

The number of Web applications which end-users
have access to has been increasing. Most of these
applications are developed by IT professionals. Thus,
attempting to achieve automation is limited to
particular tasks which calculate profit over the
development cost. Furthermore, it is difficult to
develop applications quickly. Primarily, Web
applications should be supported by business
professionals themselves since Web applications must
be modified frequently based on users’ needs.
Therefore, end-user initiative development has become
important in the automation of end-users’ fulfilling
their own needs.

Our primary approach[1] is based on component-

based software engineering. The front-end subsystem
which main part is user interface, is developed by
using application framework. The back-end subsystem
which main part is work flow, is done by using a visual
modeling tool for describing a domain model with a
message flow diagram.

Figure 1: Technologies for end-user computing.

3. Experiences on EUC

3.1. Basic approaches
 In the business world, recently, the external

specifications of application software are considered as
services as shown in keywords such as ASP, Web
service, SOA and SaaS[2,4]. Our recent approach is
for end-users to develop Web applications by service
integration because end-users consider their
applications as a level of service, not as a level of
software. A form-based approach enables Web service
integration to be defined as the form transformation
from input forms into output forms.

Our approach to Web application development is
shown in Figure 1. The business model at the business
level is proposed by those end-users who are business
professionals. Then, at the service level, the domain
model is constructed and the required services are
specified. At the software level, the domain model is
implemented by using components. In this approach,
the granularity gap between components and the
domain model is bridged by business objects and
application frameworks. The semantic gap between the
domain model and end-users is bridged by form-based
technologies.

This paper presents previous studies in Section 2,
our experiences in Section 3 and the form
transformation in Section 4 and Section 5.

3.2. Application framework

In our UI (user-interface) driven approach, the

forms are defined first and the framework is used. The
business logic depending on the application is defined
by the form definitions. The other business logic is
embedded into the framework.

For example, the framework for booking was
developed and applied to a meeting room reservation
system for our department. A total of 23 forms are
developed in this system for users and the
administrator. Among them, 20 forms are dynamic
Web pages which are defined by our visual tool. The
UI transition diagram on the forms for users is shown
in Figure 2. Almost all functions are directly mapped
into some forms. The functional sufficiency and the
usability can be evaluated and improved easily since
all use cases are simulated on the forms and the UI
transitions.

Figure 3. An example of a domain model.

However, end-users may need an IT professional’s

assistance for components to be newly developed and
complicated DB management systems.

3.4. Web service

Next, we direct our attention to services and
consider a service counter as a metaphor of a service.
Such a service counter is not limited to the actual
service counter in the real world. For example, in a
supply chain management system, exchanges of data
among related applications can be considered as data
exchanges at the virtual service counter.

 A form is considered as the interface for service.
The concept of “One service = One form” is essential
for our approach. The integration of some individual
Web services is considered as transformation from
some input forms into some output forms. Most of
these forms are not visual forms, but are abstract forms
in XML. Since end-users consider such Web service
integration as work flow with visual forms which they
are familiar with, IT skills are not required of end-
users.

Figure 2. An example of a UI transition diagram.

However, end-users may need an IT professional’s
assistance for the UI to be implemented in JSP,
components to be newly developed and a complicated
DB management system.

3.3. Visual modeling

Our previous two approaches are unified by these
concepts. The frameworks for front-end subsystems
are treated as a special case where a part of the abstract
forms are actually visual forms. The visual modeling
for back-end subsystems are treated as a special case
when the message flow is used instead of the form
flow.

The next approach is for end-users to develop Web
applications by using a visual modeling tool for the
back-end subsystem which main part is work flow.
One solution is given as a formula of “a domain model
= a computation model.” This formula implies that one
task in a domain model of cooperative work
corresponds to one object in a computation model.
Therefore, it is not necessary for the end-user to
convert a domain model into a computation model.

4. Form transformation in XSLT

 The system behavior is expressed as a message-
driven model. Then, user interfaces are generated
automatically. The system behavior is verified by
using a simulation tool. This process was confirmed
through a feasibility study. The domain model for the
program chair’s role of a particular academic
conference was constructed as shown in Figure 3 while
introducing eleven kinds of objects.

4.1. Basic XML merger

In order to apply the basic merger shown in Figure
4 to practical Web service integration, we select an
target application which generates an individual
examination schedule for each student from the

individual timetable for classes and the examination
schedule.

Figure 4: The basic merger for service integration.

The system administrator of this application is not

an IT professional but a clerk in the university office.
Such an end-user does not have the ability to perform
programming, but needs to modify the system when
the inputs change. In order to solve this problem, the
procedure is described in a script language, and a
visual tool supports the end-user. The procedure
extracting classes which are included in both inputs, is
composed of the following four steps:

1. Assign the nodes of two input files into variables.
2. Extract the element to be compared from each

input file by using the variables for counting.
3. Compare two elements.
4. Output the element if these elements are the same.
For these processes, the XSLT stylesheet is used.

The XSLT stylesheet is dependent on the individual
application, and must be described by the end-users.
The other parts are automated. It may be difficult,
however, for the end-users to describe the XSLT
stylesheet even though this scripting is rather easy
compared to programming.

We developed a visual tool which generates the
XSLT stylesheet. First, file names are input. These
XML documents are transformed into HTML
documents in which the checkboxes are located at the
front of each node, and are displayed. The user selects
the elements to be compared. That is, in this
application, the subject names are selected and
displayed as follows:

F0 /examine[1]/subject[n]/name[1]
S0 /personaltimetable[1]/subject[n]/name[1]

F0 and S0 are symbols for the corresponding
XPaths. The user can define conditions for the
comparison by using these symbols as F0 = S0. Finally,
the XSLT stylesheet is generated by entering the
output file name.

4.2. Multistage XML merger

The basic merger transforms input abstract forms in
XML into output abstract forms in XML with simple
business logic. Next, this merger is extended for

dealing with complicated business logic. As an
example, we chose a system to advise students on
graduation requirements. This system advises a student
to take specific subjects necessary for graduation from
inputs of both his/her school report and a manual on
graduation requirements. The school report shows a
list of subjects and the credits the student has already
completed. The manual shows conditions for
graduation, which are considered as complicated
business rules. That is, subjects are categorized into
several groups which compose a hierarchy, where each
category has individual conditions.

Figure 5. A configuration of the multistage merger.

For dealing with such complicated business logic,

the multistage merger is introduced as shown in Figure
5. In the multistage merger, generally, the intermediate
output, AF-k, is transformed into the next intermediate
output, AF- (k+1).

In the multistage merger, four kinds of templates for
the root element, the subject category, compulsory
subjects and semi-compulsory subjects are introduced.
For example, in the template for compulsory subjects,
the “totalunits” is calculated by using Xpath with the
sum function and the current function. The “full” is
calculated by using Xpath with the not function.

Finally, in this application, the seven stages were
necessary for the confirmation of conditions required
for graduation.

5. Form transformation by mapping

5.1. Form-to-form transformation (FTFT)

One solution to the problem of the form
transformation in XSLT is the form transformation by
mapping from input forms to output forms. The end-
users need not to learn XML and XSLT technologies
since they can define the form transformation
procedure by only mouse manipulations to relate items
in input forms to items in output forms. After defining
of this procedure, the form transformations from input
forms into output forms is executed.

Let’s consider a Web application of goods sales.
For example, a login form is transformed into a query
form to a database for member management and then

the result form from the DB is transformed into a form
for the member. Figure 6 shows one part of form flows
and form-to-form transformations. FTFT (2:1) implies
the form transformation from two inputs into one
output. That is, the sales management subsystem gets
data of the stock report from the stock management
DB and data of a user balance from the account
management DB, and displays the sales window. Next,
FTFT(1:2) implies the form transformation from one
input into two outputs. That is, the sales management
subsystem gets data of the purchase order from a client,
and sends one sales report to the stock management
DB and another sales report to the account
management DB.

Figure 6. A part of form-to-form transformation.

In this figure, the sales window on the left hand side

is an actual visual form, but four other forms imply
abstract forms which are not displayed visually at the
application execution time. Such an abstract form is
used by end-users when constructing an application.

5.2. A visual tool for FTFT

A tool for definitions and executions of the form-to-
form transformations was developed. The user
interface was implemented in HTML and JavaScript.
The generated procedure in XML is sent to the server
and stored there. The interpreter of this procedure in
XML was implemented in Java.

Figure 7 shows an example of a form-to-form
transformation definition. The input form and the
output form are displayed on the left. The palette with
operators, variables and functions is displayed on the
right. The circled numbers are added for explanation of
the order of mouse manipulation. Whenever a column
of forms or an operation item of the palette is clicked,
the order and the operation item are displayed below
for confirmation. The first three operations define that
the value of the item name column in the input form is
copied into the item name column in the output form.
The INIT operation implies initialization of execution
as the previous execution result is not used. The
following five operations define that x := Price *
Quantity. The last three operations define that Total :=

x. Alternatively, of course, the operations of Total :=
Price * Quantity is possible without use of the variable.

As shown in this example, the variables of x, y and
z are used to temporarily store execution results. The
functions of f, g and h are used for complex business
logic. For example, operations for definition of
Total := f(Price, Quantity) is a sequence of clicks as
{Price, =, f, INIT, Quantity, =, f, INIT, f, =, Total}.
The body of the function, f, is defined in a scripting
language.

Figure 7. Form-to-form transformation definition.

6. Conclusions

The form-based approach for Web services
integration by end-user initiative application
development was proposed. Our experiments
confirmed the effectiveness of this approach.

References

[1] Chusho, T., Tsukui, H. and Fujiwara, K. : A Form-base
and UI-Driven Approach for Enduser-Initiative Development
of Web Applications, Applied Computing 2004, IADIS,
pp.II/11-II/16, 2004.
[2] Gold, N., Mohan, A., Knight, C. and Munro, M.,
“Understanding Service-Oriented Software,” IEEE Software,
V21, N2, pp.71-77, 2004.
[3] Lieberman, H. (Ed.), “Special issue on Programming by
example,” Comm. ACM, V43, N3, pp.72-114, 2000.
[4] Malloy, B., Kraft, N., Hallstrom, J. and Voas, J.,
“Improving the Predictable Assembly of Service-Oriented
Architectures,” IEEE Software, V23, N2, pp. 12-15, 2006.
[5] Ozsoyoglu, G. and Wang, H., “Example-Based Graphical
Database Query Languages,” IEEE Computer, V26, N5,
pp.25-38, 1993.
[6] Sutcliffe, A. and Mehandjiev, N.(Guest Ed.)，End-user
development，Comm. ACM, V47, N9, pp. 31-32, 2004.

	1. Introduction
	2. Previous studies on end-user computing
	3. Experiences on EUC
	3.1. Basic approaches
	3.2. Application framework
	3.3. Visual modeling
	3.4. Web service

	4. Form transformation in XSLT
	4.1. Basic XML merger
	4.2. Multistage XML merger

	5. Form transformation by mapping
	5.1. Form-to-form transformation (FTFT)
	5.2. A visual tool for FTFT

	6. Conclusions
	References

