
M-base : Enduser-Initiative Application Development
based on Message Flow and Componentware

Takeshi CHUSHO, Mitsuyoshi MATSUMOTO and Yuji KONISHI

Department of Computer Science, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

e-mail : chusho@cs.meiji.ac.jp

Abstract

Explosive increase in enduser computing on distributed
systems requires that endusers develop application soft-
ware by themselves. One solution is given as a formula
of “a domain model≡ a computation model.” This for-
mula implies that one task in a domain model of coop-
erative work corresponds to one object in a computation
model based on an object-oriented model. Application de-
velopment environment, M-base1, supports this formula for
cooperative systems such as groupware and workflow sys-
tems. At the first stage, thesystem behavior at a macro
level is expressed by using a modeling and simulation tool
for constructing a message-driven model while focusing on
message flow and componentware. At the second stage,
a source program in a script language is generated auto-
matically from the message-driven model. Furthermore, if
necessary, static structure and detailed specifications of ob-
jects are expressed in the script language. Communication
among objects is performed by a set of messages instead of
a message, forimplementation of flexible workflow.
Key words :

enduser computing, software development environment,
distributed systems, object-orientation, domain modeling,
visual programming, componentware

1. Introduction

Recently, computer networks for information systems
are rapidly spreading on trends of the Internet and intranets.
An increasing number of untrained endusers began interact-
ing with computers. Then new software paradigms for such
new fields with explosive increase in application software
are required.

1Mitsuyoshi MATSUMOTO is with Hitachi, Ltd. since Apr. 1998 and
Yuji KONISHI is with Hitachi Software Eng. Co., Ltd. since Apr. 1997.

Generally, endusers are classified into the following
three typical categories:

1. Clerks using terminals of a large-scale mission-critical
information system such as banking systems.

2. Office workers using application packages on personal
computers for their own tasks.

3. Clients using public terminals such as ATMs on bank-
ing systems.

This paper primarily considers endusers of the second
category. The users of the first category are supported by
a department of information system development in a com-
pany or an organization. The users of the third category uses
only application packages in a given way.

The users of the second category began using applica-
tion packages not only for their individual task, but also
for their cooperative work such as workflow systems and
groupware[11]. When these application packages can not
satisfy such endusers, they must customize these packages
or find new ones. Finally, if there are no packages for their
work which they want to automate, they must develop their
applications by themselves while being supported some-
times by system engineers.

For such endusers, it may be easy to understand a do-
main model, but it must be difficult to convert the domain
model into a computation model which provides a frame-
work of application software. One solution for enduser-
initiative application development is given as a formula of
“a domain model≡ a computation model.” This formula
implies that one task in a domain model of cooperative work
corresponds to one object in a computation model based on
an object-oriented model. From this formula, the other for-
mula of “analysis≡ design” is derived since it is not neces-
sary to convert a domain model into a computation model.
This process requires necessarily a prototype approach with
sufficient simulation of the domain model instead.

Application development environment, M-base, sup-
ports these formulas for developing cooperative systems
such as groupware and workflow systems. The basic idea
is based on an object-oriented model since the model may
satisfy these two formulas. However, our approach is differ-
ent from most conventional object-oriented analysis and/or
design methods[9, 17] which need defining an object model
on static structure of objects prior to a dynamic model on
interactive behavior among objects.

In our approach, behavior of a domain model is first con-
structed and then a static model is defined strictly[4, 5].
That is, at the first stage, the system behavior at a macro
level is expressed by using a modeling and simulation tool
for constructing a message-driven model while focusing on
message flow and componentware[15]. At the second stage,
a source program in a script language is generated automat-
ically from the message-driven model. Furthermore, if nec-
essary, static structure and detailed specifications of objects
are expressed in the script language[14]. Communication
among objects is performed by a set of messages instead of
a message, for implementation of flexible workflow. Then
specifications of each object is defined by message transfor-
mation from input messages to output messages.

In the next section, the modeling process is described
in comparison with conventional modeling methods. The
framework of M-base, the modeling and simulation tool,
and the script language are described in Sec. 3, Sec. 4 and
Sec. 5 respectively.

2. Modeling Process

2.1. Previous Studies

For the past few years, the greatest attention in soft-
ware engineering has been focused on object-oriented soft-
ware development. This technology seems to promote
paradigm shift of software for coming generation informa-
tion systems. Essential concepts of object-oriented tech-
nologies came out around 1970 and were expanded into
programming methodologies[7]. Object-oriented program-
ming has been already used in practice into various soft-
ware fields, especially in middleware such as graphical
user interface builders and distributed object management
platforms. However, these successes in object-oriented
programming(OOP) do not necessarily imply successes in
object-oriented analysis(OOA) and design(OOD) yet al-
though many methodologies of OOA and OOD came out
around 1990[1, 6, 19, 20, 23].

Many of conventional OOA/OOD techniques propose to
identify objects or classes from the real world at the first
step. For example, some methodologies propose to con-
sider nouns in problem specifications as objects and to con-
sider verbs as methods. This idea may be suitable for large-

scale database-centered systems such as banking systems in
which problem domain has been refined enough and a data
model has been defined also in conventional systems. If
not, too many objects and methods will be selected in vain,
especially in an office information system.

This is because these techniques are based on a data
model rather than a dynamic behavior model of the whole
system and promote such design process as objects are de-
fined prior to their behavior by using various notations of
static relationships between objects. Recent modeling tech-
niques such as UML (Unified Modeling Language)[2] and
VMT(Visual Modeling Techniques)[21] improve the imbal-
ance.

In a distributed system for enduser computing, however,
the dynamic model at a macro level is required first since
the requirements can not be specified exactly at the initial
stage. In M-base, modeling and simulation of workflow are
repeated first for constructing the dynamic model based on
the very simple principle: “Assign one task to an object.”

2.2. Research Goals

A new approach and its support tools were developed for
satisfying the following requirements :

1. The target software is a distributed office information
system for cooperative work such as a workflow sys-
tem and groupware.

2. The endusers are office workers who are professionals
of office work but are not professionals of information
technologies.

3. The system designers are mainly the endusers them-
selves although system engineers may support the en-
dusers.

4. The maintenance is performed by the endusers them-
selves since the system specifications will modified
frequently after running and the system must be
changed quickly.

2.3. A Two-Layer Model

Object-oriented technologies are primarily considered as
a computation model since the essence of object-oriented
technologies must be a message-driven model which is suit-
able to express a whole behavior of a system or a subsystem.
This paper proposes the following paradigm for software
development based on object-oriented modeling:

1. A dynamic model corresponding to system behavior,
is expressed in a message-driven model.

2

2. A static model corresponding to both specifications
and static relations of objects, is expressed in classes
and its hierarchies.

Figure 1. Conceptual framework of the two-
layer model.

This paradigm is called a two-layer model in this paper
and the conceptual framework is shown in Figure 1. These
two layers are discriminated each other definitely in devel-
opment process. A source program in a script language is
generated automatically from the dynamic model, and is
considered as a base of a static model.

In the static model, however, satisfaction degree of the
requirements depends on a class library to be used. In par-
ticular, domain-specific components, which are sometimes
called as business objects, will contribute to easiness of de-
velopment. M-base promotes the growth of component-
ware. Furthermore, if necessary, static structure and de-
tailed specifications of objects are expressed in the script
language.

2.4. Domain Modeling

2.4.1. Formal modeling process

The modeling process in M-base is formalized as shown
in Figure 2. A domain model is composed with an
object-based analysis model(OAM) and a class-based de-
sign model(CDM), where these two models correspond to
the dynamic model and the static model of the aforemen-
tioned two-layer model respectively. In the remainder of

this paper, “object” implies “instance” and is discriminated
from “class.”

Figure 2. Modeling process based on the two-
layer model.

2.4.2. Object-based analysis model

The object-based analysis model is expressed as OAM ={
O, M, T}. O denotes a set of objects as O ={o[i]}, where
o[i] is the i-th object. M denotes a set of messages as M =
{m[i,j,n]}, where m[i,j,n] is the n-th kind of a message from
o[i] to o[j]. Two functions of “sender” and “receiver” are in-
troduced for getting a sender object and a receiver object of
the message as sender(m[i,j,n]) = o[i] and receiver(m[i,j,n])
= o[j] respectively. Assuming that the outside of the sys-
tem is regarded as an object with the subscript number of
zero, o[0], then a set of messages from the outside and a set
of messages to the outside can be denoted respectively as
follows:

Min = {m|sender(m) = o[0], m ∈ M}
Mout = {m|receiver(m) = o[0], m ∈ M}

T denotes a set of behavior as T ={t[r]} where t[r] is the
following message transformation:

t[r] : m[i, j, n] → m[j, k1, n1], m[j, k2, n2], ...
This expression implies that the object of o[j] receives the
message of m[i,j,n] and then sends a sequence of messages,
m[j,k1,n1], m[j,k2,n2],

In short, a domain model for a distributed system is con-
structed in accordance with a procedure shown in Figure 2.
At the first step, Min and Mout are confirmed. Then, while
examining message flow processes, O, M and T are identi-
fied.

3

2.4.3. Class-based design model

Next, this model is refined into the class-based design
model as CDM ={MD, C, H}, where MD, C and H de-
note a set of methods, a set of classes and a set of class
hierarchies respectively.

External specification of each object is represented by
a set of methods corresponding to messages which are re-
ceived by the object. Suppose M(o[j]) denotes a set of mes-
sages which o[j] receives, and must be a subset of M. A
set of methods of o[j], MD(o[j]), is obtained by operations
that a subset of M(o[j]) is extracted from M(o[j]) as each
message in the subset is equivalent to one another in the
function and that the subset is corresponded to a method
in MD(o[j]). That is, o[j] has methods which number is
equal to the number of such equivalent sets. Consequently,
MD = ∪j MD(o[j]).

A set of objects which are equivalent to one another in a
set of methods, can be generated from the same class. That
is, a set of classes, C, is obtained by operations that a sub-
set of O is extracted from O as each object in the subset is
equivalent to one another in the set of methods and that the
subset is corresponded to a class in C. That is, if MD(o[i])
= MD(o[j]), o[i] and o[j] are generated from the same class.

A set of classes which are similar to one another in a set
of methods, can compose a class hierarchy with inheritance.
Suppose MD(c[i]) denotes a set of methods for a class of
c[i]. The following hierarchical relation is introduced:

h[r] : c[i] → c[j]ifMD(c[i]) ⊂ MD(c[j])
That is, if MD(c[i]) is a true subset of MD(c[j]), c[i] is able
to become a superclass of c[j] by the following operation:

MD(c[j])/new = MD(c[j])/old − MD(c[i])
Furthermore, if MD(c[i]) and MD(c[j]) share a true com-
mon subset, a new class corresponding to this common sub-
set, c[k], is able to become a superclass of both c[i] and c[j]
as follows:

h[s] : c[k] → c[i]
h[t] : c[k] → c[j]

At the same time, the following operations are performed:
MD(c[k]) = MD(c[i])/old ∩ MD(c[j])/old
MD(c[i])/new = MD(c[i])/old − MD(c[k])
MD(c[j])/new = MD(c[j])/old − MD(c[k])

Consequently,
H = {h[i]}.

2.5. Metaphor-Base Modeling Process for Endusers

Our conceptual framework is based on the object-
oriented concepts. However, since endusers are not familiar
with these technologies, practical development process has
been provided based on metaphors of an office as described
below.

Since workflow is essential in most cases of develop-
ing a distributed system, it is natural to model the system

behavior in message flow expressing dynamic relationships
among objects. Cooperative work at an office is expressed
by using a message-driven model as follows:

1. A person or a group to whom one or more tasks are
assigned, is considered as an object.

2. Communication means such as forms, memos, tele-
phone calls, mails, verbal requests, etc. between per-
sons or groups, are considered as messages.

3. Cooperation of persons or groups is performed by mes-
sage flow.

For support of such metaphor-base modeling, each task
is often personified, and then is considered as an object in
M-base as follows:

1. If one task is assigned to a person in the real world,
an object corresponding to the person is introduced for
assignment of the task in the domain model. This map-
ping is very natural personification.

2. If one task is assigned to a group in the real world, an
object corresponding to the group is introduced for as-
signment of the task in the domain model. The group,
that is, the task is personified as if the task were as-
signed to one person in the real world.

3. If some tasks are assigned to a person or a group in
the real world, an object corresponding to each task is
introduced. The task is personified as if each task were
assigned to a different person in the real world.

In M-base, the principle of object decomposition is very
simple as follows:

“Assign one task to an object.”
It must be easy for endusers to apply this principle because
they can assign each task to objects as if to assign each task
to each person under the condition that the sufficient num-
ber of able persons exist.

3. Framework of Development Environment

Relations between M-base and an application architec-
ture to be developed by using M-base, are shown in Figure
3. M-base provides the following tools :

1. A modeling and simulation tool

2. A script language

3. A user interface builder

4. A component builder

4

An application to be developed by using M-base, is com-
posed of the following three parts:

1. A model

2. Componentware

3. A user interface

Figure 3. Application architecture (the inner
part) and support tools (the outer part).

The model is a body for inherent process in the applica-
tion, and is partitioned into two parts. The dynamic model
is constructed by using the modeling and simulation tool
while referring to the domain-specific componentware. The
static model is defined in the script language while referring
to the basic componentware although a base of the static
model is generated automatically from the dynamic model.
If necessary, components are developed by using the com-
ponent builder though system engineers may support it. The
user interface is separated from the model for a client/server
or 3-tier system configuration, and is constructed by using
the user interface builder. The common platform plays an
important role in an open system including an distributed
object management.

4. Modeling and Simulation

4.1. A Modeling and Simulation Tool

The modeling and simulation tool is used for construct-
ing the dynamic model by mouse manipulation, and is a
kind of visual programming tool which supports applica-
tion development by connecting icons. Conventional tools,
however, support only such typical procedures as retrieving
data from database, making a table of the data and then dis-
playing its bar chart. On the other hand, M-base supports to
express a domain model as message-driven model first, to

define semantics of messages in detail if necessary, and to
simulate the domain model for validation.

In this section, the following modeling procedure is de-
scribed while giving an example:

1. Definitions of external specifications

2. Construction of a dynamic model

3. Refinement of each object

4. Simulation of behavior

Let’s consider development of the object-oriented of-
fice system, OOOffice, for convenience of explanation of a
metaphor-base modeling. OOOffice is a system for meeting
arrangements. This system is similar to a scheduling func-
tion in an application package of a groupware product, and
then is considered a typical example of a distributed system.
This paper pays attention to software development process
for endusers instead of application itself.

4.2. Definitions of External Specifications

The external specifications of OOOffice are defined in
the same way as a context diagram of structured analysis or
a usecase of OOSE[12] as follows:

1. Identification of endusers

The enduser of OOOffice is a chairperson.

2. Specifications of functions

The usecases of OOOffice are meeting arrangements
and the cancellation.

4.3. Construction of a Dynamic Model

A dynamic model of OOOffice as shown in Figure 4 is
constructed.

1. Identification of objects

Four types of objects are introduced , that is, a secre-
tary, rooms, instruments and members.

2. Identification of messages among those objects

The secretary object receives an Arrange message for
meeting arrangements and then sends a Reserve mes-
sage for meeting room reservation to the room object,
a Reserve message for projector reservation to the in-
strument object and Announce messages for notice to
the member objects. The member objects return At-
tend messages.

5

Figure 4. An example of a domain model of a
distributed office system, OOOffice.

An actual example is shown in Figure 5 as a part of the
domain model of OOOffice shown in Figure 4. Objects are
defined by drag-and-drop from the palette of icons. Mes-
sages between objects are defined by drawing arrow lines
from source objects to drain objects while numbering the
messages in order of execution. An enduser is called an
actor.

4.4. Refinement of Each Object

After the instance-based domain model is constructed, a
class-based static model will be defined. If objects are gen-
erated from given components, the following refinement is
not necessary. If not, a source program in the script lan-
guage is generated automatically as a basic part of class
definition for each object in the dynamic model. When the
role of the object is only transformation from an input mes-
sage into output messages, the following refinement is not
necessary also.

1. Specifications of semantics of methods

The method semantics specifications play an impor-
tant role in the modeling process because they bridge
a semantic gap between a dynamic model and a static
model. Therefore, they can be described under the do-
main model construction. An example of method se-
mantics specifications for the Arrange method of the
secretary object is shown as follows:

〈A〉 Reserve a meeting room.

〈a1〉 If not, ask a user the next action.

〈B〉 Reserve a projector.

〈b1〉 If not, inform a user.

〈C〉 Announce a meeting to members.

Figure 5. An example of domain model con-
struction by using M-base.

The main procedure is described in the sequence of
〈A〉, 〈B〉 and〈C〉. Exception handling is described in
the supplements of〈a1〉 and〈b1〉.

2. Scripting of method bodies

Furthermore, if necessary, detailed specifications are
expressed in the script language which is described
later.

4.5. Simulation of Behavior

Simulation is executed for validation of the application,
both on the domain model and on the event trace diagram,
while displaying trace of message flow with method seman-
tics specifications.

1. Selection of a scenario

In the simulation mode, one of methods to be invoked
from outside, is selected.

2. Execution of the scenario

Simulation is started by a click of the “start” button.
Message passing is executed one by one while clicking
the “next” button.

6

An example of simulation on an event trace diagram is
shown in Figure 6. After an Arrange message is arrived
at the secretary object, the method semantics specifications
of the Arrange method is shown in a box. By clicking the
“next” button, the reserve message is sent from the secre-
tary object to the room object. Simulation continues while
confirming message flow.

Figure 6. An example of simulation on an
event trace diagram.

5. A Script Language

5.1. Design Concepts

Since it is not suitable to define complex logic for mes-
sage flow control by iconic programming, it is almost in-
evitable to make endusers use a script language. In M-base,
the script language, Hoop [14], is used for defining the static
model with class definitions, although basic frameworks of
class definitions are generated from the dynamic model.

In comparison with conventional object-oriented lan-
guages, the significant feature of Hoop is that communi-
cation among objects is performed by a set of messages
instead of a message, for implementation of flexible work-
flow. Generally, the whole workflow is controlled by the
meta-system. However, it is difficult to understand system
behavior because both the object-level and the meta-level
must be considered. The message sets omit this difficulty
and enable endusers to consider only system behavior of
the object-level and to construct pure cooperative systems
based on metaphors of communication at offices.

5.2. Syntactic Rules

The syntax of the message set in Hoop is as follows:

M ::= Ms||Mp||X
Ms ::= [M, M, ...,M]
Mp ::= [M |M |...|M]
X ::= obj.msg

where meta-symbols of ‘::=’ and ‘‖’ imply ‘equal to’ and
‘or’ respectively. ‘msg’ and ‘obj’ imply a message and its
receiver object respectively. Semantics is described in re-
mainder of this section.

5.3. Sequential Message Sets

When each message in a message set should be executed
sequentially, the message set is expressed as [M, M, ... M].
The object which received this message set, executes the
first message and passes the remainder of the message set
to the next object.

For example, consider the following message set is sent
to obj1 :

[obj.msg1, obj2.msg2, obj3.msg3]
Obj1 executes msg1, and then send the following remainder
of a message set to obj2 :

[obj2.msg2, obj3.msg3]
Obj2 executes msg2, and then send the following remainder
of a message set to obj3 :

obj3.msg3
Finally, obj3 executes msg3.

This example may correspond to the following workflow
in three sections of a mail-order firm when an order is re-
ceived :

1. The stock of the ordered goods is checked.

2. The accounts are calculated.

3. The invoice is made.

5.4. Concurrent Message Sets

When all messages in a message set can be executed con-
currently, the message set is expressed as follows :

[M |M |...|M]
For example, consider the following message set is sent

from some object :
[obj.msg1|obj2.msg2|obj3.msg3]

The three objects of obj1, obj2 and obj3 execute the mes-
sages of msg1, msg2 and msg3 respectively.

As shown in the syntactic rule, arbitrary combination of
the sequential message sets and concurrent message sets are
admitted. For example, when the aforementioned workflow

7

of the mail-order firm is changed to the flow that tasks of (1)
and (2) are executed concurrently, the following message set
is sent:

[[obj1.msg1|obj2.msg2], obj3.msg3]

5.5. An Example of a Hoop Program

Consider OOOffice of Figure 5 again as a typical exam-
ple of groupware. M-base generates the following Arrange
method:

public Arrange(){
[Room.Reserve(),this.Reply(boolean),

Projector.Reserve()];
[Mr Abe.Announce()| Mr Baba.Announce()|

Mr Chiba.Announce()];
}

This method has two message sets. The first sequential
message set corresponds to the message flow of 2, 3 and 4
in Figure 5, which sequence implies a picture drawn with a
single stroke of the brush. The second concurrent message
set corresponds to the three message flows of 5 in Figure 5.

6. Discussions

6.1. Message Expression and its Flow Control

M-base supports the following three kinds of message
expression:

1. A message flow diagram

2. A message set

3. A message transformation

A message flow diagram is drawn by the modeling and
simulation tool. This is the easiest way for endusers since
the system generates the corresponding codes in the script
language based on simulation. However, it is not suitable to
define complex logic.

A message set is described in the script language. This
is an easier way for endusers since the message sets cor-
respond to workflow at their office. Sometimes, however,
a common object which is included among many message
sets, may be required to add exception handling for one of
them. It is not easy for endusers to solve the problem of
how to assign a new task to the common object.

A message transformation is derived from the message
flow diagram and the message sets. Sometimes, however,
endusers may define message transformations of some ob-
jects directly in the script language. This is because speci-
fications of common components must be defined indepen-
dent of the individual workflows.

For these three kinds of message expression, M-base
supports the following two ways of message flow control:

1. Integrated control

2. Distributed control

The integrated control of massage flow is performed by
a message set which specifies one or more paths of message
flow. This way corresponds to a case where the workflow of
a task is decided at the starting point in the real world. It is
easy to modify workflow by rewriting the message set. The
integrated control is also performed by the message flow di-
agram with numbers for execution order since the message
flow implies the message set.

On the other hand, the distributed control of message
flow is performed by a message transformation which spec-
ifies only the relation between an input message and one or
more output messages. A path of message flow is expressed
by a sequence of message transformations. It may be risky
to modify workflow by changes of message transformation
because the change may cause side effects of unintentional
change of other workflows.

Consequently, M-base recommends users to specify
workflow by the message flow diagram with numbers for
execution order or message sets if possible. On the other
hand, objects in high commonality of a domain should be
provided as domain-specific component which specifica-
tions are defined by message transformations.

6.2. Componentware

In M-base, domain-specific componentware is extracted
easily from software architecture of a developed application
system since the domain model is constructed based on an
object-oriented model. The componentware[3, 22] may be
classified into the following categories though classification
is dependent on a viewpoint :

1. An application framework[8, 13]

2. Design patterns[10, 16, 18]

3. A class library

4. Composite objects

5. Black-box components

The application framework provides software architecture
and a class library for developing an application system in
the specific domain. The design pattern provides a set of
classes which collaborate each other for solving a typical
design problem. A composite object is composed of sev-
eral objects and provides a high level component. A black-
box component is easy-to-use since it is not necessary for

8

a user to know the source code. M-base supports these
componentware. Especially, The script language supports
the nested structure of objects for recursive construction of
componentware.

6.3. Implementation

Tools of M-base have been implemented by using Java
under JDK1.1.5. The modeling and simulation tool is com-
posed of 63 classes whose program size is 7,300 lines. The
processor of the script language is composed of 55 classes
whose program size is 6,000 lines. Communication proto-
col for a distributed system was implemented by JavaRMI.
The UI builder which is a kind of a draw tool with GUI
components, has been almost developed and will be linked
to the modeling and simulation tool for exchange of input
and output data soon. The component builder under con-
struction is based on JavaBeans.

7. Conclusions

One solution was given for two indispensable require-
ments of new fields with explosive increase in application
software on distributed systems, that is, “a domain model≡
a computation model” and “analysis≡ design.” The prac-
tical enduser-initiative development process was derived
from the two-layer model. This modeling process is sup-
ported by the modeling and simulation tool and the script
language. Since untrained endusers are increasing still, fur-
ther study is needed to enrich domain-specific component-
ware.

Acknowledgment

This work on the modeling and simulation tool and the
script language has been supported in part by Engineer-
ing Adventure Group Linkage Program(EAGL) and by The
Telecommunications Advancement Foundation (TAF) re-
spectively. The authors wish to express their gratitude to
Mr. Katsuya Fujiwara for icon designs.

References

[1] G. Booch. Object-oriented design with applications. Ben-
jamin/Cummings, 1991.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. The unified mod-
eling language.OOPSLA’97 Tutorial Note, (35), 1997.

[3] A. W. Brown(Ed.).Component-based software engineering.
IEEE CS Press, 1996.

[4] T. Chusho. M-base : Object-based modeling of applica-
tion software as “domain model≡ a computation model,”
(in japanese).Information Processing Society of Japan, SIG
on Software Engineering, 95(104-4):25–32, May 1995.

[5] T. Chusho, Y. Konishi, and M. Yoshioka. M-base : An ap-
plication development environment for end-users computing
based on message flow.Proc. APSEC’96, pages 366–375,
Dec. 1996.

[6] P. Coad and E. Yourdon.Object-oriented design. Prentice-
Hall, 1991.

[7] O. Dahl and C. A. Hoare.Hierarchical program structures,
Structured Programming. Academic Press, 1972.

[8] M. Fayad and D. C. Schmidt. Object-oriented application
frameworks.Commun. ACM, 40(10):32–38, Oct. 1997.

[9] R. G. Fichman and C. F. Kemerer. Object-oriented and con-
ventional analysis and design methodologies.IEEE Com-
puter, 25(10):22–39, Oct. 1992.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, 1995.

[11] J. Grudin. Computer-supported cooperative work : history
and focus.IEEE Trans. Computer, 27(5):19–26, May 1994.

[12] I. Jacobson and et al.Object-oriented software engineering.
Addison-Wesley, 1992.

[13] R. E. Johnson. Frameworks = (components + patterns).
Commun. ACM, 40(10):39–42, 1997 Oct.

[14] Y. Konishi and T.Chusho. Design of an object-oriented lan-
guage for analysis and design of cooperative systems, and its
feasibility study (in japanese).Proc.Object-Oriented Tech-
nology ’96 Simposium, pages 87–94, July 1996.

[15] M. Matsumoto, Y. Konishi, and T.Chusho. Analysis and de-
sign of a software development, m-base, based on “a domain
model≡ a computation model,” (in japanese).Proc. Object-
Oriented Technology ’97 Simposium, pages 128–135, July
1997.

[16] S. J. Mellor and R. Johnson. Why explore object methods,
patterns, and architectures ?IEEE Software, 14(1):27–30,
Jan./Feb. 1997.

[17] D. E. Monarchi and G. I. Puhr. A research typology for
object-oriented analysis and design.Comm. ACM, 35(9):35–
47, Sep. 1992.

[18] W. Pree.Design patterns for object-oriented software devel-
opment. Addison-Wesley, 1994.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-oriented modeling and design.
Prentice-Hall, 1991.

[20] S. Shlaer and S. J. Mellor.Object-oriented systems analysis
: modeling the world in data. Prentice Hall, 1988.

[21] D. Tkach, W. Fang, and A. So.Visual modeling technique.
Addison-Wesley, 1996.

[22] J. Udell. Componentware.BYTE, pages 46–56, May 1994.
[23] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.Designing

object-oriented software. Prentice Hall, 1990.

9

