
FACL : A Form-based Agent Communication Language
for Enduser-Initiative Agent-Based Application Development

Takeshi CHUSHO and Katsuya FUJIWARA
Department of Computer Science,

School of Science and Technology, Meiji University
Kawasaki, 214-8571, Japan

chusho@cs.meiji.ac.jp

Abstract

The number of endusers using the Internet increases on

the inside and outside of offices. Enduser-initiative develop-

ment of applications has become important for automation

of their own tasks. As the solution based on the philosophy :

“All routine work both at office and at home should be car-

ried out by computers,” this paper describes a multi-agent

framework and an agent communication language(ACL)

for the MOON(multiagent-oriented office network) systems

which are distributed systems including window work in

B-to-C and B-to-B electronic commerce. The multi-agent

framework is a Java application framework and includes a

form-based ACL(FACL) as a common protocol for passing

application forms and the three kinds of agents working at

client terminals, server-at-windows and the MOON servers

respectively. FACL has very simple message structure of

(who, what, how, which) because FACL was designed based

on the simple concept that “one service = one form.” FACL

is used primarily for window task sending or receiving writ-

ten forms between a client agent and a domain expert agent.

In addition, broker agents and mobile agents of MOON

servers participate in these communications for directory

services and form delivery services. FACL brings high in-

teroperability among distributed application systems based

on agent technologies, and promotes that endusers them-

selves develop their agents by teaching agents what to do.

Key words : multi-agent, agent communication language,

application framework, object-oriented technology, elec-

tronic commerce

1. Introduction

The number of endusers using the Internet increases on

the inside and outside of offices. This trend promotes the

following our philosophy: “All routine work both at office

and at home should be carried out by computers.” Our pol-

icy for this purpose is enduser-initiative development of dis-

tributed information systems by implementing agents of the

endusers, by the endusers, for the endusers because pack-

age software may not substitute for various work of various

endusers [3, 4].

As the solution based on agent technologies, this pa-

per describes a form-based agent communication lan-

guage(FACL) for enduser computing under distributed sys-

tems. As a typical distributed information system, we direct

our attention to an application system for windows or coun-

ters in banks, city offices, travel agents, mail-order compa-

nies, etc. Some kind of window work such as mail-order

business has already been put to practical use in current

computer networks including the Internet as online shop-

ping. However, both friendliness of enduser interfaces for

clients and automation of routine work for domain experts

are still insufficient. In addition, the work to be automated

may be limited to particular ones such as electronic com-

merce related to B-to-B and B-to-C, which make a profit

over the development cost.

In the near future, the information society will require

such new technologies that domain experts can automate

their own work by themselves and that almost all clients

can operate computers at home or at office without extra

training or without the help of others. Furthermore, a com-



mon protocol between the windows and their clients must

be developed for avoiding appearance of a number of in-

compatible interfaces corresponding to the explosive num-

ber of combination of the windows and their clients.

Multi-agent systems must be the solution for these prob-

lems because endusers may teach their operations to agents

without programming and because these agents may coop-

erate each other by using a common agent communication

language. The multi-agent systems will bridge a seman-

tic gap between applications and endusers while application

frameworks [6] and patterns [10] bridge a granularity gap

between components and applications as shown in Figure

1.

Granularity
Gap

End-users

Application

Components

Semantic
Gap

Agents

Application
Frameworks

Patterns

Figure 1. Technologies for bridging a seman-
tic gap and a granularity gap between en-
dusers and components.

Agent technologies came out in 80’s from two research

areas of artificial intelligence and software technologies. A

variety of agents have already proliferated without a con-

sensus of opinion on the meaning of the term [1]. The ap-

plication area is a wide range from email support [15, 17]

to negotiations in electronic commerce [16]. Recently it in-

cludes mobile agents. For example, a tool for nonprogram-

mers to build a mobile agent by using visual modeling and

a small set of generic icons [5].

In particular, multi-agent systems are important for ad-

vanced applications based on distributed systems and the

Internet such as electronic commerce support systems.

An agent communication language(ACL) is one of the

key technologies for interactions among independently-

developed applications with agents [11, 20]. Roughly

speaking, in the history of ACLs, the Knowledge Query

and Manipulation Language(KQML) was developed in late

80’s by the ARPA Knowledge Sharing Effort [7] and many

ACLs followed it. Then the standardization is being tried

by FIPA(Foundation for Intelligent Physical Agents) and

OMG(Object Management Group) Agent WG. FIPA has

proposed the draft of FIPA ACL [8] which provided more

than twenty Communicative Acts(CAs) for communication

among independently developed agents. OMG Agent WG

[18] intends to recommend common agent technology rep-

resenting reusable, interoperable, portable application com-

ponents which enable developers to better understand how

to develop applications using agent technology.

In this paper, a customizable multi-agent system is con-

sidered as a kind of application framework including do-

main specific patterns, where agents and their ACL are con-

sidered as business objects and a communication protocol

for cooperation among the objects respectively. This paper

proposes the form-based ACL(FACL) which will be used

for applications with window task sending or receiving writ-

ten forms and which has very simple message structure of

(who, what, how, which).

The objective is that endusers themselves develop their

agents by teaching agents what to do. The first version of a

multi-agent framework, the wwHww system, was designed

as a distributed cooperative system based on a message-

driven model of object-oriented technology and was imple-

mented as a Java-base application framework. An applica-

tion framework implies a reusable semi-complete applica-

tion or a skeleton of an application that can be specialized

to produce custom application, and that is represented by

both a set of abstract classes and the way their instances

interact [6, 14]. In the wwHww system, use of the applica-

tion framework including FACL brings high interoperabil-

ity among distributed application systems, that is, among

agents in the applications. The customization of the hot

spots in the application framework implies the agent devel-

opment by endusers.

This paper presents the requirements for the agent-based

application in Section 2, the design of FACL in Section 3,

the multi-agent framework in Section 4, and finally discus-

sions about ACL, design patterns and heterogeneity.

2



Security
 Server

Transaction 
Server

FormServer

Directory Server

Servers
at Home

University
City Office

Travel 
AgentMail-order Co.

Clients

Server-at-windows

Internet

Broker
Agent

Mobile
Agent

Expert Agents

Client Agents

at Office
Outdoorsin Town

Figure 2. A MOON(multiagent-oriented office network) system.

2. Requirements for Agent-based Application

2.1. An Example of Application

Recently, business process re-engineering [13] has at-

tracted notice since information technologies may drasti-

cally improve efficiency and effectiveness of company ac-

tivities. Now it extends to virtual companies and electronic

commerce. Furthermore, information technologies repre-

sented by the words “Internet” and “multimedia,” will give

the power of process re-engineering of human society as

well as business fields.

Let’s suppose that you move from some city to any city.

How many windows in various organizations do you contact

for an address change? How many application forms do

you fill in? How many questions do you ask to domain

experts? If these processes can be executed by agents in our

computer at home or at office, a lot of time will be saved.

As for domain experts at windows, they are asked about

the same question of how to fill in the form again and again

every day and repeat the same explanation and the same

check of written applications. If these routine work can be

processed by agents, a lot of cost will be reduced.

Of course many kinds of window work have already been

put to practical use in the Internet and intranets. However,

these systems must have been developed by IT profession-

als, not by endusers and are expensive. Furthermore, al-

though the domain experts require frequent modification of

specifications in these systems for service upgrade, it is dif-

ficult to modify software timely because the domain experts

do not maintain the systems by themselves and need to ask

the IT professionals instead. Our goal is development and

maintenance of agent-based applications by endusers.

As a typical distributed information system, we direct

our attention to application systems for window work. Such

window work is not limited to the actual window work in

the real world. For example, in a supply chain management

system, exchanges of data among related applications can

be considered as the virtual window work. Therefore, in

electronic commerce, the window work is indispensable.

2.2. Application architecture

Agent-based applications are constructed on a

multiagent-oriented office network (MOON) for win-

dow work. The MOON system is based on a client/server

model and is partitioned into the following three parts as

shown in Figure 2:

1. Client terminals with client agents for sending written

applications to windows, such as personal computers

and workstations both at home and at office, public

telephones with terminals in town, portable computers

for mobile computing outdoors, etc.

2. Server-at-windows with expert agents for receiving

written applications, such as windows in mail-order

companies, city offices, travel agents, universities, etc.

3



3. MOON servers for managing the network system.

The MOON servers imply the following four servers

and some of them may be located physically in server-at-

windows:

1. A directory server with a broker agent manages net-

work addresses of server-at-windows to receive written

applications as service directories of windows.

2. A form server with a mobile agent manages various ap-

plication forms for services at these windows, which

forms are defined with help messages and selection

menus by domain experts.

3. A transaction server stores written applications re-

ceived by server-at-windows with the identification

numbers, manages the states of the process and replies

to inquiries about the states. It may be connected with

a workflow system in the organization including the

server-at-window.

4. A security server controls access rights to server-at-

windows and the MOON servers, and manages authen-

tication of clients.

2.3. Features of agent-based applications

2.3.1. Automatic form processing

The first feature of the MOON system is electronic form

processing which is navigated by agents both in client ter-

minals and in server-at-windows. The following require-

ments are essential for enduser-initiative agent-based appli-

cation development by using the application framework of

the MOON system:

1. Clients can teach the fixed operations of filling in a

form about such plain words as their names, addresses

and phone numbers to their agents. Then their agents

do so instead.

2. Domain experts can teach their expertise to their

agents. Then the agents guide clients in filling in the

form and check the written form.

These facilities bring freedom from routines to both

clients and domain experts. We named these agents “In-

telligent Clones” since they perform the routine work with

adaptation and learning facilities as if their owners would

do so [2].

2.3.2. A common ACL

The second feature of the MOON system is standardiza-

tion of ACL for communication between client agents and

expert agents. Design of ACL depends on features of multi-

agent systems. Roughly speaking, multi-agent systems are

classified into two types. That is, agents are cooperative or

competitive each other. This paper describes cooperative

multi-agent systems because clients and domain experts are

cooperative in the most cases of the form-based application

domain.

Furthermore, these cooperative multi-agent systems are

classified into two subtypes. That is, agents are homoge-

neous or heterogeneous each other. In the homogeneous

environment, every agent has the same internal architecture.

In many cases, the agent has a shared goal, and solves the

subgoal cooperatively.

In the heterogeneous environment, every agent is devel-

oped independently and has an individual goals. These

agents cooperate each other for constructing the compli-

ant society. This paper describes this type because each of

client agents and expert agents can perform each task alone

in the form-based application domain.

3. Design of FACL

3.1. Design policies

The form-based ACL(FACL) was designed for commu-

nication between client agents and expert agents. Because

the communication is performed by sending or receiving

written forms, FACL is different from FIPA ACL and is very

simple as follows:

1. FACL does not limit the services of each agent al-

though FIPA ACL limits them to a set of the given

Communicative Acts(CAs) or embeds them into con-

tent of each message. The services in FACL are pro-

vided as forms by the enduser individually.

2. The concept of FACL is that one service implies one

form which is registered to the directory server al-

though FIPA ACL gives examples that client agents

4



inquire about services of a particular agent or an un-

known agent by using the CA of “query-ref” or “prop-

agate” respectively. This difference affects to a mech-

anism of directory services.

3.2. The basic form of FACL and the semantics

Messages of requests to windows in FACL include the

following elements:

• Who receives your request?

• What do you request to the window?

• How do you request it?

The name of the multi-agent framework, wwHww, is de-

rived from ‘who-what-how with WWW’ and is pronounced

as ‘who’ for convenience. The following element is added

to these three elements.

• Which is your request?

That is, the basic form of FACL is shown as follows:

(who, what, how, which)

The sender’s name is usually included in the how-parameter

at the form-based application level although a sender name

is included as one of message parameters in FIPA ACL.

The semantics of FACL is based on a message passing

concept of conventional object-oriented programming lan-

guages. The four parameters correspond to elements of a

message between objects respectively as follows:

who : A message receiver object

what : A method name

how : Parameters for a method invocation

which : A message number

In the MOON system, the who-parameter implies a win-

dow where a written application is sent to. The what-

parameter implies the title of the application form. The

how-parameter implies contents of the application form.

The which-parameter implies a receipt number stamped on

the received written application.

As KQML can be thought of as consisting of three lay-

ers: the content layer, the message layer and the communi-

cation layer [7], FACL can be done so. The who-parameter

is positioned on the communication layer as the identity of

the message receiver. The what-parameter is positioned on

the message layer as determinant of the kinds of interac-

tions since this parameter corresponds to the performative

name in KQML. The how-parameter is positioned on the

content layer as the actual content of the message. The

which-parameter may be positioned on the communication

layer if a receipt number is considered to be attached to a

message as a unique identifier associated with the commu-

nication such as the ‘:reply-with’ keyword of KQML. In

FACL, however, the which-parameter is considered to be

positioned on the message layer because the receipt num-

ber is stamped on the received written application and is re-

ferred to later by messages for inquiries about the received

application.

The states of values of these parameters in FACL affect

semantics of the message. If a value of a message param-

eter is unknown, the message implies an inquiry about the

parameter. This semantics is quite different from conven-

tional object-oriented programming languages because it is

illegal not to determine the message receiver, the method

name and the actual parameters for conventional message

sending. This extension in this paper, however, produced

attractive effect. Examples are given in the next subsection.

3.3. Enduser interface

The actual enduser interface for filling in the form is dif-

ferent from the basic form which is the internal representa-

tion in the system. Examples of requests by using FACL are

given in the basic form for convenience, where the follow-

ing notations are used:

a, b, ... : Parameters with known values.

?a, ?b, ... : Inquiries about the parameters with known

values, which request help messages.

x, y, ... : Parameters without values.

?x, ?y, ... : Inquiries about the parameters themselves,

which request all possibles for selection.

In the basic form of FACL, a word in which the first

character is ’?’, is used for two different kinds of in-

quiries although it means a variable in FIPA ACL and

5



KIF(Knowledge Interchange Format) [9]. The second use

such as ?x and ?y for requesting all possibles in FACL is

similar to the use of a variable in Prolog.

1. Examples of sending written applications:

(a) (a, b, c, x)

The written application, b, with the contents, c,

is sent to the window, a. A message number will

be assigned to the variable, x, by the window re-

ceiving this message.

(b) (a, b, , ?d)

The state in the process of the written application,

b, of the message number, d, is inquired of the

window, a.

(c) (a, b, , -d)

The written application, b, of the message num-

ber, d, which was already sent to the window, a,

is canceled. That is, the first character, ’-’, of the

which-parameter with a known value, implies the

cancellation.

In FIPA ACL, the CAs of “request” or “inform” may

be used for (a). That is, “request” is used for request-

ing the receiver to perform some action and “inform”

is used for informing some proposition. For (b), the

id which the receiver defined as the parameter value

of “:reply-with” in the previous message, may be used

as the parameter value of “:in-reply-to” in the sender’s

message. For (c), the CA of “cancel” is used. In com-

parison with FIPA ACL, FACL provides the simpler

and easier-to-understand message expressions because

the what-parameter specifies the service name explic-

itly.

2. Examples of inquiries about application forms:

(a) (a, b, ?x, )

The application form, b, to be sent to the window,

a, is displayed. How to fill in the form is navi-

gated by the expert agent. Some typical items are

filled automatically by the client agent.

(b) (a, ?x, , )

The title list of all application forms which the

window, a, receives, is displayed.

(c) (?x, ?y = (a list of keywords), , )

The list of titles of all application forms which re-

late to the list of keywords, is displayed with the

names of windows receiving them. The system

retrieves forms whose titles include the keywords

or in which help messages include the keywords.

(d) (?x, ?y, , )

All windows and all titles of application forms

which are received by those windows, are listed.

(e) (?a, , , )

The explanation on the work of the window, a, is

displayed.

(f) (a, ?b, , )

The explanation on the application form, b, to be

sent to the window, a, is displayed.

These inquiries must be simpler than messages in FIPA

ACL in which “request” for (a), (e) and (f), “query-

ref” for (b) and “propagate” for (c) and (d) may be

used because FACL is based on the form concept. In

addition, qualified names for the who-parameter may

be used such as a1.a2 and a1.?x2 in a hierarchy of an

organization.

3.4. An example of operations

Let’s consider a citizen who wants to get permission for

parking at the city hall and suppose that he or she does not

know where and how it can be gotten. Figure 3 shows op-

erations to be done by using a personal computer as a client

terminal of the MOON system at home. The operations and

the basic form of FACL to be sent at each step are described

as follows:

(a) “City.*” is input to the who-column and the keywords

of “parking” and “Hall” are input to the what-column

in the initial screen, and then the basic form of (City.?x,

?y = (“parking” “Hall”), , ) is sent. That is, the char-

acter, ’*’, implies a wild card and is transformed into

’?x’ of the basic form.

(b) The system displays “CityHall Sec.” in the who-

column and “Parking form” in the what-column. By

clicking the value area in the what-column, the basic

6



Who

What

How

Which

Parking form

CityHall Sec.

Who

What

How

Which

Who

What

How

Which

"parking" "Hall" Parking form

CityHall Sec. Who

What

How

Which

Parking form

CityHall Sec.

ID

Date

OK

Oct. 25, 2000

1946M 511

FORM

Who

What

How

Which

Parking form

CityHall Sec.

<Filled in>

PK20006507

(a) (b) (c)

(d) (e)

The procedure ...

HELP

City.*

Figure 3. An example of operations of the
MOON system at home.

form of (“CityHall Sec.”, ? “Parking form”, , ) is sent.

The first character, ’?’, of the what-parameter with a

known value implies the help message request.

(c) The system displays the help message on the park-

ing form. After clicking the value area of a blank in

the how-column, the basic form of (“CityHall Sec.”,

“Parking form”, ?z, ) is sent.

(d) The system displays the application form. After filling

in the two blanks for the ID no. and the date, the basic

form of (“CityHall Sec.”, “Parking form”, (“ID no.” =

“1946M511”, “date” = “Oct. 25, 2000”), w) is sent.

In equations of the how-parameter, the left sides are

column names in the form and the right sides are input

values of the columns.

(e) The system displays the message number in the which-

column, while the value is assigned to the variable, w.

Then the system terminates by clicking the close but-

ton.

4. Multi-agent Framework

4.1. Software architecture

The first version of the multi-agent framework, wwHww,

has been developed with a library system, which is used in

Figure 4. An example of the wwHww browser
at a client terminal.

our laboratory. Such a form-base system is helpful to us

since there are no librarians in our laboratory, For exam-

ple, we can know who borrowed some book because every-

one fills in an electronic application form when taking out

a book from our laboratory. We can know whether some

book has been already registered or not because everyone

fills in an electronic application form after he or she bought

the book for our laboratory.

An example of the wwHww browser for taking out books

is shown in Figure 4. The head part indicates the name of

the server-at-window in the who-parameter and the name of

the service in the what-parameter. The white part implies

the how-parameter, that is, the electronic application form

itself requested.

The software architecture is shown in Figure 5. The

wwHww browser of the client side is composed of two sub-

systems, that is, the form browser and the directory browser.

The wwHww server of the server side is composed of three

subsystems, that is, the directory server, the form server and

the transaction server. This system was implemented in Java

and there are Java applet versions and Java application ver-

sions for two browsers. The wwHww protocol for messages

in FACL was implemented by Java RMI. Consequently the

application framework is constructed in three layers with

19 classes in Java. The upper layer is composed of the form

browser of 6 classes, the directory browser of 1 class, the di-

rectory server of 1 class, the form server of 1 class and the

7



wwHww Server

Directory
Service

Transaction
Service

Form
Service

Library
Workflow
System

Library
DBMS

Request

Send

Reply

Reply

Return

wwHww Browser

Directory
Browser

Form
Browser

wwHww
Protocol

Client ServerNetwork

Request

Figure 5. An application and the multi-agent
framework.

transaction server of 1 class. The middle layer is composed

of the core of wwHww browser of 4 classes and the core of

wwHww server of 2 classes. The lower layer is composed

of the wwHww protocol of 3 classes.

4.2. An application building procedure

Domain experts build expert agents by using the frame-

work as follows:

1. Service definitions : Services at the window, are de-

fined.

2. Form definitions : Electronic forms for these services

are defined while embedding navigation information

into these forms.

3. Transaction processing definition : How to process

written forms is selected among three typical process-

ing methods of printing out, storing in a database or

passing to a workflow system.

4. Registration : These definitions are registered into the

corresponding servers.

An example of a browser for the library system defini-

tions is shown in Figure 6. The left-hand part implies a hi-

erarchical directory. The right-hand part implies definitions

about the service for taking out books.

4.3. The four kinds of agents

Basically domain experts build expert agents by form

definitions while teaching their expertise as mentioned

Figure 6. An example of the browser for sys-
tem definitions by domain experts.

above. These expert agents are mobile agents also since

the form is sent to a client terminal from the form server

and return to the transaction server. On the other hand, the

directory server is a broker agent since a client agent asks

about suitable expert agents.

The client agent is independent of the expert agent, the

mobile agent and the broker agent. The client agent has fa-

cilities for automatically filling in the form. The knowledge

is classified into two categories. One is knowledge on the

owner itself such as a name, an address, a phone number

and a birth day, which is independent of each form. The

other is knowledge on each form such as a member num-

ber and a grade of membership, which is dependent on the

server-at-window of the form.

As for automatically filling in the form of the first cate-

gory, some intelligence is required for different expressions

of the same meaning, such as ”Phone” and ”TEL.” This

problem was solved by introducing concept names such

as @NAME, @ADDRESS, @PHONE and @BIRTHDAY.

The label name of an item in a form is mapped into the con-

cept name by using mapping rules. Then the concept name

is mapped into the individual value by using mapping rules

also. For example, both ”Phone” and ”TEL” are mapped

into @PHONE. Then the actual phone number of the owner

is filled in the form by the client agent.

As for the second category, some intelligence is required

for the same expressions of the different meaning, such

8



as a ”member number” of IEEE or a ”member number”

of ACM. When there are two mapping rules for the con-

cept name of @MNO, selection depends on the context in

the form including the label name of ”member number.”

For this reason, the mapping rule has constraints which are

taught by the owner.

Actually, these two kinds of problems may happen in

both categories although the solutions are same. For exam-

ple, @ADDRESS may have two values of a home address

and an office address. A ”member No.” may be used in a

form instead of a ”member number.”

5. Discussions

5.1. The number of primitives in ACL

FIPA ACL provides 22 CAs(communicative acts) and

15 pre-defined message parameters based on the speech act

theory. These CAs are classified into five groups, that is,

five for information passing, three for requesting informa-

tion, four for negotiation, eight for action performing and

two for error handling. It looks electronic commerce ori-

ented although the goal of FIPA ACL is wide range appli-

cation.

Generally, the first messages for triggering interactions

are classified into two types, that is, whether a message re-

quests the receiver’s reply or not. For example, ”request”

and ”inform” in FIPA ACL correspond to each type respec-

tively. An example of FIPA ACL messages is given as fol-

lows:

(inform

:sender agent1

:receiver hp1-auction-server

:content (price (bid good02) 150)

:in-reply-to round-4

:reply-with bid04

:language sl

:ontology hp1-auction

)

The meaning of this message is actually understood by the

combination of three parameters of “:content,” “:language”

and “:ontology.” That is, the message content expression

can be understood by specifying the description language

of the expression and by specifying the domain in which

the symbols in the expression are used.

In FACL, since the goal is enduser-initiative agent devel-

opment, the other policy is taken as

one service = one form = one CA.

Because the primitive communication method is a form, the

number of kinds of forms is not limited. It must be easy for

endusers to understand these concepts.

5.2. ACL as design pattern

The framework of the wwHww system is constructed of

Java classes. Messages of FACL imply messages among

classes. Therefore this framework is considered as a de-

sign pattern for form-based applications. Generally the de-

sign patterns are descriptions of communicating objects and

classes that are customized to solve a general design prob-

lem in a particular context [10].

In FACL, there are three abstract classes of a client agent,

an expert agent and a broker agent. The wwHww pro-

tocol with the definite who-parameter and definite what-

parameter, implies a message between a client agent and

an expert agent. The wwHww protocol with the indefinite

who-parameter or indefinite what-parameter, implies a mes-

sage between a client agent and a broker agent.

The Agent Working Group of OMG describes software

agents in the green paper [18] as “basically, software agents

are design patterns for software,” although the agent-based

pattern is not defined yet. The green paper indicates one

of issues for modeling an agent as an object. That is, ex-

pressive limitations arise in practice if an agent is provided

with a method for each message which the agent can accept,

instead of providing the agent with a single method, “Ac-

ceptCommunicativeString,” which would permit the agent

to accept arbitrary messages. The FACL provides one so-

lution that domain experts can register arbitrary forms with

the directory server.

5.3. Heterogeneous environment

In the heterogeneous environment, each agent may be

developed independently. This type of a multi-agent sys-

tem is widely applied in various domains such as electronic

commerce. In the heterogeneous environment, the external

interface of an agent for communication with other agents

should be strictly separated from the internal architecture.

9



In FIPA ACL, although the heterogeneous environment

is supposed, independently developed agents may not com-

municate each other in the case that a different language is

specified for each CA. For this reason, FIPA is making the

content language library [9].

FACL supports cooperative multi-agent systems on the

heterogeneous environment for compliant society of inde-

pendent agents. Because of the form-base concept, the sep-

aration of the internal architecture and the external interface

is strict. However, automatically understanding meaning of

messages among agents is more difficult. For this reason,

it is necessary for the owners to teach their agents what to

do once. That is, a domain expert teaches an expert agent

how to navigate the client to fill in the form, and a client

teaches the client agent what to fill in the form about typ-

ical items. This problem is reduced by using XML [12]

for implementing an electronic form because the items in

the form are given the particular meaning in advance. For

example, it is useful to declare the concept names such as

@NAME and @PHONE for automatically filling in forms

as element types. The wwHww intelligent form was imple-

mented by using XML and BML(Bean markup Language)

which is an XML-based component configuration or wiring

language customized for the JavaBeans component model

[21].

6. Conclusions

The Form-based Agent Communication Language,

FACL, and the multi-agent framework based on this lan-

guage were developed. A MOON(multiagent-oriented of-

fice network) system is easily developed by using this

framework by domain experts themselves. These benefits

were ascertained by feasibility study.

Acknowledgment

The authors express their gratitude to Prof. Robert

Kowalski and Dr. Francesca Toni of Imperial College of

Science, Technology and Medicine for invaluable discus-

sions about the concepts of agents and multi-agents [19].

They are also indebted to Shinnosuke Chinda and Kei Shi-

mada for their invaluable technical assistance, who imple-

mented the client agent for automatically filling in the form

and the library system of our laboratory respectively.

References

[1] Bradshaw, J. M., “An Introduction to Software Agent,” Soft-
ware Agent, MIT Press, pp.3-46, 1997.

[2] Chusho,T., Software Crisis and programming paradigms, (in
Japanese), Keigaku-Shuppan, 1992.

[3] Chusho,T., Kashiwagi,K. and Kasama, Y., “wwHww : An
Application Framework for End-User Computing in Multi-
organizational Office Network Systems,” The 12th annual
conf. of Japan Society for Software Science and Technology,
pp.281-285, Sep. 1995.

[4] Fujiwara, K. and Chusho,T., “Development and Evaluation
of An Application Framework of Window Work for End-
users,” Trans. Information Processing Society of Japan, Vol.
41, No. 4, pp.1202-1211, April 2000.

[5] Falchuk, B. and Karmouch, A., “Visual Modeling for Agent-
Based Applications,” IEEE Computer, Vol. 31, No. 12,
pp.31-38, Dec. 1998.

[6] Fayad, M. and Schmidt, D. C. (Ed.), “Object-Oriented Ap-
plication Frameworks,” Commun. ACM, Vol. 39, No. 10,
pp. 32-87, Oct. 1997.

[7] Finin, T., Labrou, Y. and Mayfield, J., “KQML as an Agent
Communication Language,” Software Agent, MIT Press,
pp.291-316, 1997.

[8] FIPA, “Agent Communication Language,” FIPA Spec 2-
1999, Draft ver.0.1, Apr. 1999.

[9] FIPA, “Content Language library,” FIPA Spec 18-1999,
Draft ver.0.2, 1999.

[10] Gamma, G., Helm, R., Johnson, R. and Vlissides, J., Design
Patterns, Addison-Wesley, 1995.

[11] Genesereth, M. R., “An Agent-Based Framework for Inter-
operability,” Software Agent, MIT Press, pp.317-345, 1997.

[12] Glushko, R. J., Tenenbaum, J. M. and Meltzer, B., “An
XML Framework for Agent-based E-commerce,” Commun.
ACM, Vol. 42, No. 3 March, pp.106-114, 1999.

[13] Hammer, M. and Champy, J., Reengineering the Corpora-
tion, Harper Collins, 1993.

[14] Johnson, R. E., “Frameworks = (Components + Patterns),”
Commun. ACM, Vol.40, No.10, pp.39-42, 1997.

[15] Maes, P., “Agents That Reduce Work and Information Over-
load,” Commun. ACM, vol.37, no.7, pp.30-40, Jul. 1994.

[16] Maes, P., Guttman, R. H. and Moukas, A. G., “Agents That
Buy and Sell,” Commun. ACM, vol.42, no.3, pp.81-91, Mar.
1999.

[17] Malone, T., Lai, K. and Fry, C., “Experiments with Oval : a
Radically Tailorable Tool for Cooperative Work,” CSCW92,
pp.289-297, 1992.

[18] OMG Agent Working Group, “Agent Technology, Green Pa-
per,” OMG Document no. ec/99-12-02, Dec. 1999.

[19] Sadri, F. and Toni, F, “Computational Logic and Multi-
Agent Systems : a Roadmap,” Technical Report(Preliminary
version), Dept. Computing, Imperial College, July 1999.

[20] Singh, Munindar P., “Agent Communication Languages:
Rethinking the Principles,” IEEE Computer Vol. 31, No. 12,
PP.40-47, Dec. 1998.

[21] Weerawarana, S. and Duftler, M. J., “Bean Markup Lan-
guage,”
http://www.alphaworks.ibm.com/tech/bml, 1999.

10


