
Component-Based Application Development
on Architecture of a Model, UI and Components

Takeshi CHUSHO, Hisashi ISHIGURE, Naoyuki KONDA and Tomoaki IWATA

Department of Computer Science, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

e-mail : chusho@cs.meiji.ac.jp

Abstract

Explosive increase in end-user computing on
distributed systems requires that end-users develop
application software by themselves. One solution
is given as a formula of “a domain model≡ a
computation model,” which implies that one task
in cooperative work corresponds to one object in
an object-oriented model. Application develop-
ment environment, M-base1, supports this formula.
The application architecture is fixed and is com-
posed of a model, a user interface and compo-
nents. At the first stage, thesystem behavior is
expressed as a message-driven model by using a
modeling tool while focusing on message flow and
components. At the second stage, auser interface
is generated automatically and may be customized
if necessary. Then transition diagrams of user in-
terfaces are generated automatically and used for
confirmation of external specifications of the appli-
cation. Finally, the system behavior is verified by
using a simulation tool. This component-based de-
velopment process is confirmed by feasibility study
on a given problem of IPSJ sigRE group.
Key words :

software architecture, components, software
development process, object-orientation, domain
modeling, end-user computing

1. Introduction

Recently, computer networks for information
systems are rapidly spreading on trends of the In-
ternet and intranets. An increasing number of un-
trained end-users began interacting with comput-

1N. Konda and T. Iwata are with Sony, Co. at present.
This work is supported in part by The Okawa Foundation for
information and telecommunications.

ers. Then new software paradigms for such new
fields with explosive increase in application soft-
ware are required.

These end-users began using application pack-
ages not only for their individual task, but also
for their cooperative work such as workflow sys-
tems and groupware. When these application pack-
ages can not satisfy such end-users, they must cus-
tomize these packages or find new ones. Finally,
if there are no packages for their work which they
want to automate, they must develop their applica-
tions by themselves while being supported some-
times by system engineers. For such end-users, it
may be easy to understand a domain model, but it
must be difficult to convert the domain model into
a computation model which provides an architec-
ture of application software.

One solution for enduser-initiative application
development is given as a formula of “a domain
model≡ a computation model.” This formula im-
plies that one task in a domain model of coopera-
tive work corresponds to one object in a compu-
tation model based on an object-oriented model.
From this formula, the other formula of “anal-
ysis ≡ design” is derived since it is not neces-
sary to convert a domain model into a computa-
tion model with application architecture. This pro-
cess requires necessarily a fixed architecture and
ready-made components as business objects for
component-based development[2, 14].

Application development environment, M-base,
supports these formulas for developing cooperative
systems. The basic idea is based on an object-
oriented model since the model may satisfy these
two formulas. However, our approach is differ-
ent from most conventional object-oriented analy-
sis and/or design methods[11] which need defining
an object model on static structure of objects prior
to a dynamic model on interactive behavior among
objects.

In our component-based development process,
an application architecture is fixed and the behav-
ior of a domain model is first constructed. That
is, the application architecture is composed of a
model, a user interface and components. At the
first stage, the system behavior is expressed as a
message-driven model by using a modeling tool
while focusing on message flow and components.
At the second stage, a user interface is generated
automatically and may be customized if necessary.
Then transition diagrams of user interfaces are gen-
erated automatically and used for confirmation of
external specifications of the application. Finally,
the system behavior is verified by using a simula-
tion tool. This component-based development pro-
cess is confirmed by feasibility study on a given
problem of IPSJ sigRE group.

In this paper, an overview of M-base and fea-
sibility studies are described in Sec. 2 and Sec.
3 respectively. In Sec. 4, technical issues on the
component-based development are discussed.

2. Overview of M-base

2.1. Research Goals

M-base was developed for satisfying the follow-
ing requirements :

1. The target software is a distributed office in-
formation system for cooperative work.

2. The end-users are office workers who are pro-
fessionals of office work but are not profes-
sionals of information technologies.

3. The system is mainly designed by the end-
users themselves although system engineers
may support the end-users.

4. The maintenance is performed by the end-
users themselves since the system specifica-
tions will modified frequently after running
and the system must be changed quickly.

2.2. Metaphor-Base Modeling Process

Our conceptual framework is based on the
object-oriented concepts. The formal modeling
process that a dynamic model is designed prior
to a static model, is described in the previous
papers[3, 5].

However, since end-users are not familiar with
these technologies, practical development process
has been provided based on metaphors of an office.
Cooperative work at an office is expressed by using
a message-driven model as follows:

1. A person or a group to whom one or more
tasks are assigned, is considered as an object.

2. Various means of communication such as
forms, memos, telephone calls, mails, verbal
requests, etc. between persons or groups, are
considered as messages.

3. Cooperation of persons or groups is per-
formed by message flow.

For support of such metaphor-base modeling,
each task is often personified, and then is consid-
ered as an object in M-base. The principle of object
decomposition is very simple as follows:

“Assign one task to an object.”
It must be easy for end-users to apply this principle
because they can assign each task to objects as if to
assign each task to each person under the condition
that the sufficient number of able persons exist.

2.3. Development Environment

Relations between an application architecture
and M-base are shown in Figure 1. An applica-
tion architecture to be developed by using M-base,
is composed of the three parts of a model, compo-
nents and a user interface

The model is inherent in the application, and
is partitioned into two parts. The dynamic model
is constructed by using the modeling and simu-
lation tool while referring to the domain-specific
components. If it is not necessary to develop any
new components, the application architecture is
composed simply of the dynamic model, compo-
nents and a user interface. If necessary, the static
model is defined. After the skeleton codes of the
static model is generated automatically from the
dynamic model, the method definitions are refined
by using the script language. Basically, however,

A user interface

A dynamic model

A static
 model

Basic components

Domain-
specific
components

End-users System engineers

A component
 builder

A user interface
 builder

A modeling and
simulation tool

A script language

Common platform

Figure 1. Application architecture (the
inner part) and support tools.

2

Figure 2. An example of domain model constructed by using the modeling tool.

a static model is an internal form which end-users
need not to understand.

The user interface is separated from the model
for a client/server or 3-tier system configuration,
and is constructed by using the user interface
builder. If necessary, components are developed by
using the component builder though system engi-
neers may support it. The common platform plays
an important role in an open system including an
distributed object management.

3. Feasibility Study

3.1. Modeling Procedure

In this section, the following modeling proce-
dure is described while giving an example:

1. Definitions of external specifications

2. Construction of a dynamic model of a domain

3. Refinement of user interfaces

4. Simulation of behavior

We use a given example of “tasks of a program
chair for an international conference” which is de-
fined and used since 1998 by the Working Group
on Requirement Engineering, the Special Interest
Group on Software Engineering, Information Pro-
cessing Society of Japan [12]. The tasks of a pro-
gram chair are given as the eleven items. The first
sentences of the first five items are described as fol-
lows:

(a) The schedule should be decided.

(b) CFP should be made and distributed.

(c) The program committee(PC) members should
be selected and registered.

(d) The submitted paper should be given the num-
ber to and be registered.

(e) The receipt of the paper should be acknowl-
edged to the author(s).

3.2. Definitions of External Specifications

The initial requirements are refined for defini-
tions of external specifications. Examples on the
five items are given. That is, (a) Based on past ex-
periences, the draft of the schedule is generated by
entering the first day of a conference, and may be
modified. (b) CFP is produced as a HTML docu-
ment by entering the content corresponding to each
item in a given prototype. A plain text and a PDF
file are automatically produced and distributed via
email. (c) The initial data of the PC members are
entered manually into the computer file. (d) The
initial data of the submitted paper are entered man-
ually into the computer file also. (e) The receipt of
the paper is sent to the author(s) automatically.

3.3. Construction of a Dynamic Model

The modeling and simulation tool is used for
constructing the dynamic model by mouse manip-
ulation as a kind of visual programming tool. Espe-
cially, this tool supports to express a domain model
as message-driven model first and to simulate the
domain model for validation.

A dynamic model was constructed as shown
in Figure 2 while introducing eleven kinds of ob-
jects. Objects are defined by drag-and-drop from

3

the palette of icons. A message between objects is
defined by drawing an arrow line from the source
object to the drain object.

If an object is not given as a ready-made com-
ponent, the object must be refined. M-base sup-
ports three ways for component refinement. The
script language was first implemented. Although
complicate workflows was expressed precisely in
message sets [5], it was not easy for end-users to
use it.

Next, M-base supported the nested structure
of objects for recursive definition of user-defined
components by providing the four kinds of com-
ponents, namely, control components, UI com-
ponents, domain-specific components and other
primitive components.

Recently, the rule expression has been imple-
mented, for easy description of branch conditions.
For example, in the “produce” method of the
CFP Production object, the following rules are de-
scribed for branch conditions:

- if Printer = yes then print;
- if CFP Distribution = yes then distribute;

3.4. Refinement of User Interfaces

After the instance-based domain model is con-
structed, the UI builder generates user interfaces
automatically by using the information which is
sent from the modeling tool. Figure 3 shows an ex-
ample of a window for input of contents of the CFP.
The UI builder supports end-users to customize it
for improving user friendliness if necessary.

Next the UI builder generates the transition dia-
grams of user interfaces. An end-user can validates
external specification by using these diagrams. As
a result, two errors of missing the necessary mes-

Figure 3. An example of a user inter-
face generated automatically.

sage flows were found and specifications of five
items were improved in our experience.

3.5. Simulation of Behavior

Simulation is executed for validation of the ap-
plication, both on the domain model in Figure 2
and on the sequence diagram in Figure 4, while
displaying traces of the message flow.

For execution of each scenario, one of methods
to be invoked from outside, is first selected. Then
the simulation is started by a click of the “start”
button. Message passing is executed one by one
while clicking the “next” button.

Figure 4. An example of simulation on
a sequence diagram.

4. Discussions

4.1. Object-Oriented Modeling Process

Many of conventional OOA/OOD techniques
propose to identify objects or classes from the real
world at the first step. This is because these tech-
niques are based on a data model rather than a dy-
namic behavior model of the whole system, and
promote such design process as objects are defined
prior to their behavior by using various notations of
static relationships between objects. Recent mod-
eling techniques such as UML (Unified Modeling

4

Language)[1] and its related approaches [9, 6] im-
prove this imbalance and become more flexible, al-
though UML does not define design process.

For end-user computing, however, the dynamic
model at a macro level based on instance objects,
is required first because the domain model is spec-
ified while corresponding to objects with tasks of
the real world. In M-base, modeling and simula-
tion of workflow are repeated first for constructing
the dynamic model based on the very simple prin-
ciple: “Assign one task to an object.”

4.2. Application Architecture and Compo-
nents

In general, software architecture is defined in
terms of a collection of components and interac-
tions among those components [13]. M-base sup-
ports application architecture as a model, com-
ponents and a user interface. That is, interac-
tions among components are expressed as a do-
main model, and the user interface is separated
from the domain model.

This architecture is similar to the 3-tier architec-
ture of presentation, function and data but not the
same. A presentation layer corresponds to UI. A
function layer corresponds to a domain model and
may include business components. A data layer
implies DB components.

One of issues on components is a granular-
ity gap between an application and components.
There are some ways for enlargement of granular-
ity. That is, an application framework [7] provides
software architecture and a class library. Design
patterns [8] are micro-architectures and smaller ar-
chitectural elements than frameworks [14]. A com-
posite object [10] is composed of several objects
and provides a high level component. For example,
the component-base technologies of frameworks
and design patterns were applied into enduser-
initiative agent-based application development [4].

The recursive definition of the component is es-
sential for large-scale applications, for top-down
development by stepwise refinement and/or for
bottom-up development by building block ap-
proach, as follows:

<A> ::= a set of<A> | <a>
where<a> is a primitive component and<A> is
an application or a composite component.

M-base supports the nested structure of objects
for recursive construction of components. How-
ever, the best case for end-users is that they pro-
duce applications by a dynamic model, UIs and
ready-made domain-specific components which
are called as business objects.

5. Conclusions

One solution for enduser-initiative application
development was given based on the formulas of
“a domain model≡ a computation model” and
“analysis≡ design.” The architecture was fixed
and was composed of a domain model, UIs and
components. The feasibility study confirmed the
component-based process by using tools of the en-
vironment, M-base, such as the modeling tool and
the UI builder. These tools were implemented by
using Java and are composed of 185 classes which
program size is 18,800 lines.

References

[1] S. S. Alhir. UML. O’reilly, 1998.
[2] A. W. Brown(Ed.).Component-based software en-

gineering. IEEE CS Press, 1996.
[3] T. Chusho. M-base : Object-based modeling of ap-

plication software as “a domain model≡ a com-
putation model,” (in japanese).Information Pro-
cessing Society of Japan, SIG on Software Engi-
neering, 95(104-4):25–32, May 1995.

[4] T. Chusho and K. Fujiwara. Facl : A form-
based agent communication language for enduser-
initiative agent-based application development.
Proc. COMPSAC2000, Oct. 2000.

[5] T. Chusho, M. Matsumoto, and Y. Konishi. M-
base : Enduser-initiative application development
based on message flow and componentware.Proc.
COMPSAC98, pages 112–120, Aug. 1998.

[6] D. F. D’Souza and A. C. Wills. Objects, com-
ponents and frameworks with UML. Addison-
Wesley, 1999.

[7] M. Fayad and D. C. Schmidt. Object-oriented ap-
plication frameworks.Commun. ACM, 40(10):32–
38, Oct. 1997.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[9] I. Jacobson, G. Booch, and J. Rumbaugh.The
unified software development process. Addison-
Wesley, 1999.

[10] D. Krieger and R. M. Adler. The emergence of
distributed component platforms.IEEE Computer,
31(3):43–53, Mar. 1998.

[11] D. E. Monarchi and G. I. Puhr. A research ty-
pology for object-oriented analysis and design.
Comm. ACM, 35(9):35–47, Sep. 1992.

[12] A. Ohnishi. Requirements engineering work-
ing group (in japanese). Winter Workshop in
Kouchi, IPSJ Simposium series Vol.99(1):21–26,
Jan. 1999.

[13] M. Shaw and D. Garlan.Software architecture.
Prentice Hall, 1996.

[14] C. Szyperski. Component Software. Addison-
Wesley, 1997.

5

