
Automatic Filling in a Form by an Agent for Web Applications

Takeshi Chusho, Katsuya Fujiwara, and Keiji Minamitani
Department of Computer Science,

School of Science and Technology, Meiji University
Kawasaki, 214-8571, Japan

chusho@cs.meiji.ac.jp

Abstract

The number of end-users using the Internet increases on

the inside and outside of offices. Enduser-initiative devel-

opment of applications has become important for automa-

tion of their own tasks. This paper describes a multi-agent

framework for the MOON(multiagent-oriented office net-

work) systems which are distributed systems including win-

dow work in electronic commerce. Especially, since the

window work is considered as a metaphor of the interface

between service providers and the service requesters for

web services, this paper is focused on automatic filling in

a form by a user agent in collaboration with a broker agent,

which is one of key technologies for electronic forms defined

as HTML documents. At the first step, a satisfactory success

rate is achieved by using cognitive rules based on a form

layout. That is, the case rule of {IF #case THEN #action }
is introduced. The #case is composed of the four attributes

and their values based on cognitive information on the up-

per, left, right and lower sides of the input field. The ontol-

ogy of concept names is introduced for different expressions

of the same meaning. Furthermore, by the reasoning of sim-

ilarity on incomplete matching of the case parts of rules, the

success rate of automatic filling is greatly improved. At the

second step, the success rate is improved further to 100%

by using experiential rules of other users, which the broker

agent gathers up. 1

Key words : software agent, multi-agent, web application,

rule, reasoning

1K. Fujiwara and K. Minamitani are with Akita University and Hitachi,
Ltd. at present respectively.

1. Introduction

The number of end-users using the Internet increases on

the inside and outside of offices. Enduser-initiative develop-

ment of applications has become important for automation

of their own tasks. This trend promotes the following our

philosophy: “All routine work both at office and at home

should be carried out by computers.”

As the solution based on CBSE(Component-Based Soft-

ware Engineering) [2], this paper describes a form-based

approach for end-user computing under distributed systems.

As a typical distributed information system, we direct our

attention to an application system for windows or counters

in banks, city offices, travel agents, mail-order companies,

etc.

In the near future, the information society will require

such new technologies that domain experts can automate

their own work by themselves and that almost all clients

can operate computers at home or at office without extra

training or without the help of others.

Multi-agent systems must be the solution for these prob-

lems because end-users may teach their operations to agents

without programming [1, 9, 10]. Actually, multi-agent

systems are used for advanced applications based on dis-

tributed systems and the Internet such as electronic com-

merce support systems [11]. An agent communication lan-

guage(ACL) is one of the key technologies for interactions

among independently-developed applications with agents.

Then the standardization is being tried by FIPA(Foundation

for Intelligent Physical Agents) [7] and OMG(Object Man-

agement Group) Agent WG [12].

Especially, since the window work is considered as a

Business

Service

Software

End-users
(Business professionals)

Domain Model
(Application)

Components
(Business objects)

Semantic Gap

Granularity Gap

Agents

Frameworks

Patterns

Figure 1. Technologies for bridging gaps be-
tween end-users and components.

metaphor of the interface between service providers and the

service requesters for web services, this paper is focused on

automatic filling in a form by a user agent in collaboration

with a broker agent, which is one of key technologies for

electronic forms defined as HTML documents. At the first

step, a satisfactory success rate is achieved by using cogni-

tive rules based on a form layout. At the second step, the

success rate is improved by using experiential rules of other

users.

This paper presents the multi-agent framework in Sec-

tion 2, automatic filling in a form in Section 3, cognitive

rules in Section 4 and experiential rules in Section 5.

2. Multi-Agent Framework

2.1. Basic concepts for web application

For web applications, the following two features are con-

sidered to be essential:

(1) Rapid development and continuous variation.

(2) End-user initiative.

Business based on Internet technologies, is rapidly

changed. For this reason, the application development pe-

riod from defining a new business model through releas-

ing new services, must be short. Furthermore, after the re-

lease, the application should be maintained continuously as

the business world changes. Conventional ways for appli-

cation development and maintenance by system engineers,

are not suitable because of no timeliness. For “just-in-use,”

enduser-initiative development is required.

Our approach to how to make web applications is shown

in Figure 1 [5]. The three layers of the left zone and the

central zone imply the abstract level and the concrete level

respectively. The right zone implies technologies. The busi-

ness model at the business level is proposed by end-users.

Then, at the service level, the domain model is constructed

and the required services are specified. That is, the re-

quirement specifications of the application for the business

model are defined. At the software level, the domain model

is implemented by using components to be combined.

In this approach, there are two technological gaps, that

is, the granularity gap between components and the domain

model, and the semantic gap between the domain model and

end-users. The granularity gap is bridged by business ob-

jects, patterns [8] and application frameworks [6] based on

CBSE(Component-Based Software Engineering). On the

other hand, the semantic gap is bridged by multi-agent sys-

tems.

2.2. A form as a metaphor for web services

As a typical distributed information system, we direct

our attention to application systems for window work. Such

window work is not limited to the actual window work in

the real world. For example, in a supply chain management

system (SCM), exchanges of data among related applica-

tions can be considered as the virtual window work.

Generally, window work or counter work is considered

as service requests from clients to service providers. Forms

to be filled in are considered as the interface between them.

That is, the following concept is essential for our approach:

”One service = One form.”

2.3. Application architecture

Agent-based applications are constructed on a

multiagent-oriented office network (MOON) for window

work [3]. The MOON system is based on a client/server

model and is partitioned into the following three parts as

shown in Figure 2:

1. Client terminals with client agents for sending written

applications to windows, such as personal computers

2

Security
 Server

Transaction
Server

FormServer

Directory Server

Servers
at Home

University
City Office

Travel
AgentMail-order Co.

Clients

Server-at-windows

Internet

Broker
Agent

Mobile
Agent

Expert Agents

Client Agents

at Office
Outdoorsin Town

Figure 2. A MOON(multiagent-oriented office network) system.

and workstations both at home and at office, public

telephones with terminals in town, portable computers

for mobile computing outdoors, etc.

2. Server-at-windows with expert agents for receiving

written applications, such as windows in mail-order

companies, city offices, travel agents, universities, etc.

3. MOON servers for managing the network system.

The MOON servers imply the following four servers

and some of them may be located physically in server-at-

windows:

1. A directory server with a broker agent manages net-

work addresses of server-at-windows as a service di-

rectory of windows.

2. A form server with a mobile agent manages various ap-

plication forms for services at these windows, which

forms are defined with help messages and selection

menus by domain experts.

3. A transaction server stores written applications re-

ceived by server-at-windows with the identification

numbers, manages the states of the process and replies

to inquiries about the states. It may be connected with

a workflow system in the organization including the

server-at-window.

4. A security server controls access rights to server-at-

windows and the MOON servers, and manages authen-

tication of clients.

In our experiences of prototyping, the actual system con-

figuration is the 4-tier architecture of browsers, web servers,

application servers and DB servers. The front end of the

system is supported by application frameworks and multi-

agents. The back end is supported by domain modeling and

business objects [4].

2.4. Features of agent-based applications

A customizable multi-agent system is developed as an

application framework which implies a reusable semi-

complete application that can be specialized to produce cus-

tom application. Then the customization of the hot spots in

the application framework implies the agent development

by end-users.

The first feature is electronic form processing which is

navigated by agents both in client terminals and in server-

at-windows. Clients can teach the fixed operations of filling

in a form about such plain words as their names, addresses

and phone numbers to their agents. Then their agents do so

instead. Domain experts can teach their expertise to their

agents. Then the agents guide clients in filling in the form

and check the written form.

The second feature is standardization of ACL for com-

munication between client agents and expert agents. De-

3

sign of ACL depends on features of multi-agent systems.

This paper describes cooperative multi-agent systems.

In our previous work, intelligent navigation by expert

agents was implemented in XML base [5], and a form-based

agent communication language(FACL)[3] was developed.

In the remainder of this paper, technologies for auto-

matic filling in a form by a client agent in collaboration with

a broker agent, are described.

3. Automatic Filling in a Form

3.1. Conventional approaches

There are several conventional systems for automatic fill-

ing in a form. Some of them use predefined rules for the par-

ticular input fields of text [13]. This method has limitations

of the number of predefined rules. The others use the con-

text around the input field[14]. This method has limitations

of the accuracy since the incorrect input is often entered.

A lot of people may be familiar with the auto-complete

feature in the Internet Explorer. It helps them to fill in the

blanks by showing the candidates which are recorded based

on past experiences. This feature is sometimes useful but

not always.

In many cases, the value of the name attribute in the input

field of the HTML document, is checked. For example, the

system selects the same text which was entered once in the

input field with the same value of the name attribute. How-

ever this value is not always believable because the HTML

document designer uses the arbitrary text as the value of the

name attribute.

3.2. Basic problems

Basically, a domain expert builds expert agents by form

definitions while teaching their expertise. Each expert agent

is a mobile agent also since the form is sent from the form

server to a client terminal and return to the transaction

server. On the other hand, the directory server is a broker

agent since a client agent asks about suitable expert agents.

The client agent is independent of the expert agent, the

mobile agent and the broker agent. The client agent has fa-

cilities for automatically filling in the form. The knowledge

is classified into two categories. One is knowledge on the

owner itself such as a name, an address, a phone number

and a birth day, which is independent of each form. The

other is knowledge on each form such as a member num-

ber and a grade of membership, which is dependent on the

server-at-window of the form.

As for automatically filling in the form of the first cate-

gory, some intelligence is required for different expressions

of the same meaning, such as ”Phone” and ”TEL.” This

problem was solved by introducing such concept names

as @name, @address, @phone and @birthday. The label

name of an input field in a form is translated into the con-

cept name. Then the input field is filled with the individ-

ual value corresponding to the concept name. For example,

both ”Phone” and ”TEL” are translated into @phone. Then

the input field is filled with the actual phone number of the

owner.

As for the second category, some intelligence is required

for the same expressions of the different meaning, such as

a ”member number” of IEEE or a ”member number” of

ACM. When there are two mapping rules for the concept

name of @mno, the selection depends on the context in the

form including the label name of ”member number.” For

this reason, the mapping rules have constraints which are

taught by the owner.

Actually, these two kinds of problems may happen in

both categories although the solutions are same. For exam-

ple, @address may have two values of a home address and

an office address. A ”member No.” may be used in a form

instead of a ”member number.”

3.3. Cultural problems

There are some characteristic problems of Japanese lan-

guage. One of problems is that there are many different

expressions of the same meaning, which are used as label

names for input fields. The name is the typical example. As

Figure 3. A part of different expressions for a
name in Japanese (twelve examples).

4

a part of different expressions for the name, twelve exam-

ples are shown in Figure 3.

The other problem is that there are many types of in-

put data, that is, Chinese characters, the Japanese cursive

syllabary(hiragana), the square form of hiragana(katakana)

and English letters. Furthermore, there are two kinds of

character codes for katakana and English letters. That is,

the other code for katakana is used for dealing it as same as

a English letter of 8 bits and the other code for a English

letter is used for dealing it as same as a Chinese character

of 16 bits. There are these two kinds of character codes for

Arabic numerals also.

In many forms, the type and the character code are spec-

ified. As for the name and the address, in addition to input

data in Chinese characters, input data in either katakana or

hiragana are often requested because both katakana and hi-

ragana indicate the pronunciation of the name in Chinese

characters. When these specifications are expressed in a

form, there are a lot of variations and furthermore the note

for a target input field may be described in the upper, left,

right or lower side of the target field.

These factors limit the success rate of automatic filling

for forms in Japanese.

3.4. Kinds of rules

At present, almost all electronic forms are defined as

HTML documents which have a critical defect of lack of

semantic information. Therefore, as representation of infor-

mation exchanged between distributed applications, XML-

base documents have begun to attract notice recently. This

is because it is possible for applications to process informa-

tion easily by using predefined metadata on semantics. In

B-to-B, some XML-base documents have already been put

into practical use[15, 16]. In the future, XML-base docu-

ments may replace a lot of HTML documents.

For the present, however, electronic forms in HTML will

be used mainly. Then this paper describes how to fill auto-

matically in a form in HTML. There are two categories of

rules for automatic filling as follows:

• Cognitive rules

• Experiential rules

The number of forms

The success rate

The number of forms
(a) A conventional system

(b) A proposed method

the success rate

Figure 4. The relation between the success
rate and the number of forms.

The cognitive rules are defined based on cognitive in-

formation of displayed forms. The experiential rules are

defined based on experiences of other users’ past behavior.

4. Cognitive rules

4.1. Cognitive information

When users fill in a new form which they never once

did so, they must understand what should be described in

each input field. For this purpose, users get such cognitive

information from the context of the input field as the label

of “address” on the left side of the field, the label of “name”

and another input field on the upper side, and the label of

“phone” and the other three input fields on the lower side.

Therefore this paper assumes that it must be effective

to use information about the four sides of the target input

field for cognitive rules. An experiment was performed for

confirming this assumption. That is, the number of input

fields in which exact data can be filled by using the above

cognitive information, was counted.

The 160 sample forms to be tested, were gathered from

5

N

Forms Inference
 engine

Learning
 facility

 User
interface

 Knowledge base
(rules and ontology)

User

Working memory

Figure 5. The system architecture of the user agent for automatic filling.

the Internet. Among them, there were 1,914 input fields for

personal information.

First, these samples are used for the conventional system

of InternetExplorer 5 for Mac which supports automatic fill-

ing facilities. The result is shown in Figure 4(a). The suc-

cess rate is calculated for each form, that is, the percent-

age of the number of fields with success in automatic filling

among all fields in each form. In the figure, the horizontal

axis implies the success rate and the vertical axis implies

the number of forms corresponding to the rate.

Next, the same samples are used for the proposed

method. The result is shown in Figure 4(b). The average

success rate is 87% since the number of input fields with

success is 1,657. On the other hand, the average success

rate for the conventional system is 31%. Consequently, it

is confirmed that it is effective to use information about the

four sides of the target input field for cognitive rules.

4.2. System architecture

The system architecture of the user agent for automatic

filling is shown in Figure 5. The user agent implies a client

agent in Figure 2,

Basically this is a rule-base system. First, the related

information about a target form is described into the work-

ing memory. The inference engine fills in a form automat-

ically by using the knowledge base and the working mem-

ory. Sometimes the learning facility enhances the knowl-

edge base. The details will be described later.

4.3. Knowledge representation

The ontology of concept names is introduced for differ-

ent expressions of the same meaning as mentioned before.

For example, both label names of ”Phone” and ”TEL” are

translated into the same concept name of @phone. The user

profile based on these concept names is defined in advance

by the user and is stored with the ontology into the knowl-

edge base. That is, the value corresponding to each concept

name is registered via the learning facility in Figure 5.

The primitive case rule using cognitive information is

considered as follows:

IF #case THEN #action

The #case is composed of the four attributes and their val-

ues. That is, the UPPER, LEFT, RIGHT and LOWER imply

information on the upper, left, right and lower sides of the

input field respectively. The #action specifies the concept

name. The value corresponding to this concept name is ex-

tracted from the user profile, and is described into the input

field. An example of a primitive rule is shown as follows:

IF (UPPER: (“Address” TEXTFIELD), LEFT: ”Phone”,

RIGHT: NONE, LOWER: (“Email” TEXTFIELD)) THEN

@phone

Attributes Values

UPPER “Address”, TEXTFIELD
LEFT ”Phone”
RIGHT
LOWER “Email”, TEXTFIELD

Figure 6. An example of the working memory.

6

This rule is executed when the contents of the working

memory as shown in Figure 6 matches with the condition

part of the rule.

However this primitive rule is not flexible because the

target input field does not match with this rule if the label

on the left side of the field is “TEL.” Therefore the abstract

case rule is used instead. That is, the actual label name is

replaced with the corresponding concept name as follows:

IF (UPPER: (@address TEXTFIELD), LEFT: @phone,

RIGHT: NONE, LOWER: (@email TEXTFIELD)) THEN

@phone

In the same way, the content of the working memory is

replaced with the concept names. For example, different

expressions shown in Figure 3, should be replaced with the

concept name of @name. Consequently, the actual possi-

bility depends on the ontology.

4.4. Feasibility studies

From 293 input fields of the name in the above-

mentioned 160 forms, 240 abstract case rules with the ac-

tion of the @name were extracted. Then these abstract case

rules were applied for the 239 input fields of the name in

139 forms other than the above-mentioned 160 forms. The

result is, however, not satisfied because only 63 fields, that

is, 26%, were successful in automatic filling. The other 176

fields were not filled in with anything.

4.5. Extension of reasoning

In the feasibility study, the automatic filling is performed

only if the cognitive information of four attributes of the

target field matches completely with the case part of some

rule.

In actual cases, however, there are a lot of variations of

a case part which implies the same action. Therefore the

reasoning of similarity on incomplete matching of the case

part of rules, is introduced. The following procedure was

developed:

1. The matching is performed for each one of the four

attributes of the case part, that is, four times for each

rule.

2. The number of matching with the same action is

counted for each attribute and for each action.

3. The relative frequency of each action for each attribute

is calculated.

4. The average of the relative frequencies for the four at-

tributes is calculated as a certainty factor for the action.

5. The action with the maximum certainty factor is se-

lected.

For the attribute i {i = 1, 2, 3, 4}, the relative frequency

of the action j {j = 1, 2, · · · , M} is defined as follows:

Oij =
nij

∑M
k=1 nik

, where nij implies the number of rules with the action j

which matches with the attribute i. The certainty factor for

the action j is defined as follows:

CFj =
∑4

i=1 Oij

4

The action with the maximum certainty factor is se-

lected.

By applying this reasoning to the above-mentioned 239

input fields, the other 113 fields became successful in au-

tomatic filling in addition to the previous 63 fields. Conse-

quently, the success rate of automatic filling is greatly im-

proved from 26% to 74%. The problem to be solved, how-

ever, remains that 62 fields of 63 unsuccessful fields were

filled in with wrong values.

4.6. Analysis of unsuccessful fields

The failure factors on the above-mentioned unsuccessful

fields are considered as follows:

• lack of rules

• lack of keywords registered with the ontology

In the first experiment by using complete matching of

abstract rules, there are 176 unsuccessful fields which were

not filled in with anything. In detail, 168 unsuccessful fields

are caused by the lack of rules and 8 unsuccessful fields are

caused by lack of keywords to be translated into the concept

names.

On the other hand, in the second experiment by using the

certainty factor, there are 63 unsuccessful fields. In detail,

7

57 unsuccessful fields are caused by the lack of rules and

6 unsuccessful fields are caused by lack of keywords to be

translated into the concept names.

These problems are solved by learning of the agent

through the learning facility. For improving lack of rules,

the agent can acquire new rules by monitoring what the user

fills in the target field with, in which the agent could not fill

with the correct value.

For improving lack of keywords, the agent can acquire

new keywords as well as new rules. In comparison with

the rule acquisition, however, it is difficult to decide the

correspondence of the new keyword to the concept name.

In most cases, the keyword on the left side of the target

field corresponds to the concept name of the actual value

inputted. Sometimes, however, it does not so, and one of

the keywords on other sides may so. Therefore the agent

inquires of the user whether the keyword on the left side of

the target field corresponds to the concept name of the ac-

tual value inputted. It seems that it is easy for the user to

ask this question.

5. Experiential rules

5.1. Automatic rule generation

At the second step, a broker agent is introduced and gath-

ers experiential rules of other users up for improvement of

the success rate. In Figure 2, there is the broker agent on the

directory server. The first task is the directory service on

forms. The broker agent answers where the form is when

a user inquires about a necessary form for some service re-

quest.

The second task of the broker agent is the management

of experiential rules. The experiential rules are gathered in

collaboration with user agents as follows:

1. A user agent inquires of the broker agent about a nec-

essary form and gets it from some URL in response to

the user request.

2. The broker agent sends the experiential rules on the

form to the user agent.

3. The user agent fills in the form automatically by using

these rules.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=
"http://www.w3.org/1999/02/22-rdf-syntax-ns\#"
xmlns:o="http://wwhww.org/schemas/userprofile/1.0/"
xmlns:="http://wwhww.org/1.0/">

<FormItem rdf:about="http://www.se.cs.meiji.ac.jp/
library/entry/\#form[entry].item[name]">

<history>
<Profile amount=10>

<value><o:User.Name.First /></value>
<separator> </separator>
<value><o:User.Name.Last /></value>

</Profile>
</history>

</FormItem>
</RDF>

Figure 7. An example of an experiential rule.

4. The user fills in the blank fields without automatic fill-

ing. For the fields with automatic filling, the user check

and modified them if necessary.

5. The user agent sends the form to the window. Further-

more the user agent sends the broker agent the infor-

mation about fields in the form, that is, which ones of

the fields with automatic filling are modified or not,

what values are inputted into the fields modified, and

what values are inputted into the blank fields.

Actually, communication between the user agents and

the broker agent are performed by using the concept names

instead of actual values because an experiential rule implies

that some field corresponds to a concept name. The user

agent replaces the actual value with the concept name by

using a user profile.

The form-based agent communication language, FACL

[3], designed for the MOON system shown in Figure 2,

was implemented in XML. A description language of ex-

periential rules is designed in XML also. An example of

an experiential rule is shown in Figure 7. This example

implies that both the first name and the last name have

been inputted ten times into the name field of the form at

http://www.se.cs.meiji.ac.jp/library/entry/.

5.2. Feasibility study

For an experiment, the 50 forms on the Internet were

selected. They includes 738 fields. Among them, the items

8

to be tested are 497 fields related to the personal information

on a name, an address, a telephone, a fax, a birthday and an

email address.

The first testee filled in the all fields manually in the ini-

tial state that the broker agent had no experiential rules. As

a result, the 531 experiential rules were extracted.

When the second testee begins to fill in, the 531 fields

have already filled in automatically. Among them, the 497

fields to be tested were correct. The other 34 fields, how-

ever, were incorrect. This is because the 34 wrong rules had

been extracted from the first testee’s behavior. That is, the

causal coincidences happened that the values of the corre-

sponding concept names in the user profile were the same

as the value inputted into the different fields. For example,

the month of the birthday was the same as the month of the

graduation date. The second testee modified these incorrect

value and filled in the other blank fields.

Before the third testee begins to fill in, the threshold

value was set on the broker agent’s behavior that an ex-

periential rule was not adopted if the number of rules rec-

ommending the same concept name is not more than 50 %

among the total number of rules recommending any concept

name with respect to some field. As a result, while the 497

fields to be tested were correct, the number of fields with

incorrect automatic filling reduced to 4 fields.

Consequently, in this experiment, the success rate was

improved to 100% for the 497 items to be filled in automat-

ically although there were the four incorrect fields not to be

filled in automatically.

6. Conclusions

For enduser-initiative application development of web

applications, the multi-agent framework was proposed. In

particular, as the front end system of a web application, the

user agents and the broker agent for automatic filling in a

form were developed. Some feasibility studies confirmed

the effectiveness of both the abstract case rules of cognitive

rules and experiential rules of other users.

References

[1] Bradshaw, J. M., “An Introduction to Software Agent,” Soft-
ware Agent, MIT Press, pp.3-46, 1997.

[2] Brown(Ed.), A. W., “Component-based software engineer-
ing,” IEEE CS Press, 1996.

[3] Chusho,T. and Fujiwara, K., “FACL : A Form-based Agent
Communication Language for Enduser-Initiative Agent-
Based Application Development,” COMPSAC2000, IEEE
Computer Society, pp.139-148, Oct. 2000.

[4] Chusho, T., Ishigure, H., Konda, N. and Iwata, T.,
“Component-Based Application Development on Architec-
ture of a Model, UI and Components,” APSEC2000, IEEE
Computer Society, pp.349-353, Dec. 2000.

[5] Chusho, T., Fujiwara, K., Ishigure, H. and Shimada, K.,
“A Form-based Approach for Web Services by Enduser-
Initiative Application Development,” SAINT2002 Work-
shop (Web Service Engineering), IEEE Computer Society,
pp.196-203, Feb. 2002.

[6] Fayad, M. and Schmidt, D. C. (Ed.), “Object-Oriented Ap-
plication Frameworks,” Commun. ACM, Vol. 39, No. 10,
pp. 32-87, Oct. 1997.

[7] FIPA, “Agent Communication Language,” FIPA Spec 2-
1999, Draft ver.0.1, Apr. 1999.

[8] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design
Patterns, Addison-Wesley, 1995.

[9] Griss, M. L., and Pour, G., “Accelerating Development with
Agent Components,” IEEE Computer, Vol. 34, No. 5, pp.37-
43, May 2001.

[10] Jennings, N. R., “An Agent-Based Approach for Building
Complex Software Systems,” Commun. ACM, Vol. 44, No.
4, pp.35-41, Apr. 2001.

[11] Maes, P., Guttman, R. H. and Moukas, A. G., “Agents That
Buy and Sell,” Commun. ACM, vol.42, no.3, pp.81-91, Mar.
1999.

[12] OMG Agent Working Group, “Agent Technology, Green Pa-
per,” OMG Document no. ec/99-12-02, Dec. 1999.

[13] The Gator Co.,
http://www.gator.com/

[14] Microsoft Co., Microsoft InternetExplorer 5 Macintosh
Edition,
http://www.microsoft.com/mac/products/ie/

[15] RosettaNet,
http://www.rosettanet.org/

[16] W3C Note, “Simple Object Access Protocol (SOAP) 1.1 ,”
May 2000,
http://www.w3.org/TR/SOAP/

9

