
M-base : An Application Development Environment
for End-user Computing based on Message Flow

Takeshi CHUSHO Yuji KONISHI Masao YOSHIOKA

Department of Computer Science, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki 214-71, Japan

email : { chusho, y uji} @cs.meiji.ac . j p

Abstract

Explosive increase in end-user computing on dis-
tributed systems requires that end-users develop appli-
cation software by themselves. One solution is given as
a formula of “a domain model = a computation model.”
This formula implies that one task in a domain model
of cooperative work corresponds to one object in a com-
putation model based on an object-oriented model. Ap-
plication development environment, M-base‘ , supports
this formula for cooperative systems such as groupware
and work flow systems. At the jirst stage, the system
behavior at a macro level is expressed by using a mod-
eling and simulation tool for constructing a message-
driven model while focusing on message flow. A t the
second stage, static structure and detailed specifications
of objects are expressed in a script language. Commu-
nication among objects is performed by a set of mes-
sages instead of a message, for implementation of flex-
ible work flow.

Key words :
end-user computing, software development environ-
ment, distributed system, object-orientation, domain
modeling, visual programming

1. Introduction

Recently, hardware and software environments for
information systems are rapidly changing on trends of
downsizing, open architecture and distributed comput-
ing. An increasing number of untrained end-users be-

‘This work has been supported in part by Engineering Ad-

* Masao Yoshioka is with NEC Informatec Systems Ltd.,
venture Group Linkage Program(EAGL).

Kawasaki, Japan since Apr. 1996.

gan interacting with computers, and this number will
continue to rise as communication infrastructure be-
comes popular. Then new software paradigms for such
new fields with explosive increase in application soft-
ware are required [2].

Generally, end-users are classified into the following
three typical categories:

1. Clerks using terminals of a large-scale information
system such as banking systems.

2. Office workers using application packages on per-
sonal computers.

3. Clients using public terminals such as ATMs on
banking systems.

This paper primarily considers end-users of the sec-
ond category. The users of the first category are sup-
ported by a department of information system devel-
opment in a company or an organization. The users of
the third category uses only application packages in a
given way.

The users of the second category may use applica-
tion packages for their individual task now. In addi-
tion, they are going to use other application packages
for their cooperative work such as work flow systems
and groupware. When these given application packages
can not satisfy such end-users, they must customize
these software or develop new ones. Furthermore, if
there are no application packages for their work which
they want to automate, they must develop their appli-
cations by themselves while being supported sometimes
by system engineers.

For such end-users, it may be easy to understand a
domain model, but it must be difficult to convert the
domain model into a computation model which pro-
vides a framework of application software they require.
One solution is given as a formula of

366
0-8186-7638496 $05.00 0 1996 IEEE

domain model E a computation model.”

This formula implies that one task in a domain model
of cooperative work corresponds to one object in a
computation model based on an object-oriented model.
F’rom this formula, the other formula of

E design”

is derived since it is not necessary to convert a domain
model into a computation model under this approach.
This process requires necessarily a prototype approach
with sufficient simulation of the domain model instead.

Application development environment, M-base, sup-
ports these formulas for developing cooperative sys-
tems such as groupware and work flow systems [4]. At
the first stage, the system behavior at a macro level
is expressed by using a modeling and simulation tool
for constructing a message-driven model while focusing
on message flow. At the second stage, static structure
and detailed specifications of objects are expressed in
a script language. Communication among objects is
performed by a set of messages instead of a message,
for implementation of flexible work flow.

Our basic idea is based on an object-oriented model
since the model may satisfy these two formulas. How-
ever, our approach is different from most conventional
object-oriented analysis and/or design methods [16]
which need defining an object model on static struc-
ture of objects prior to a dynamic model on interactive
behavior among objects. In our approach, behavior of
a domain model is first constructed by focusing on mes-
sage flow. Next the message flow is defined strictly by
message sets. Then specifications of each object is de-
fined by message transformation from input messages
to output messages.

In the next section, the modeling process is de-
scribed. The framework and tools of M-base are de-
scribed in Sect. 3. In Sect. 4, the results are discussed.

2. Modeling process

2.1. Previous studies

For the past few years, the greatest attention in soft-
ware engineering has been focused on object-oriented
software development. This technology seems to pro-
mote paradigm shift of software for coming gener-
ation information systems. Essential concepts of
object-oriented technologies came out around 1970
[6, 131 and were expanded into programming method-
ologies in 1970’s [15]. Smalltalk-80 [lo] triggered
off developments of various object-oriented program-
ming languages and trials of their applications in

1980’s. Object-oriented programming has been al-
ready used in practice into various software fields, es-
pecially in middleware such as graphical user interface
builders and object management platforms. However,
these successes in object-oriented programming(O0P)
do not necessarily imply successes in object-oriented
analysis(00A) and design(O0D) yet although many
methodologies of OOA and OOD came out around
1990 [8, 161.

Most of conventional 00A/OOD methodologies are
suitable for large-scale database-centered systems such
as banking systems, but they are not suitable for appli-
cation software of such new fields as distributed office
information systems with end-user computing and co-
operative work [ll]. This is because these conventional
techniques are based on a data model rather than a dy-
namic behavior model of the whole system and promote
such design process as objects are defined prior to their
behavior by using various notations of static relation-
ships between objects [l , 5, 17, 18, 203, although there
are a few notations for system behavior among objects
such as an event trace diagram.

2.2. Research goals

A new approach and its support tools have been
developed for satisfying the following requirements and
are described as facilities of M-base in this paper:

1. The target software is a distributed office informa-
tion system for cooperative work such as a work
flow system and groupware.

2. The end-users are office workers who are profes-
sionals of office work but are not professionals of
information technologies.

3. The system designers are mainly the end-users
themselves although system engineers may sup-
port the end-users.

4. The maintenance is performed by the end-users
themselves since the system specifications will
modified frequently after running and the system
must be changed quickly.

2.3. A two-layer model

Object-oriented technologies are primarily consid-
ered as a computation model since the essence of
object-oriented technologies must be a message-driven
model which is suitable to express a whole behavior
of a system or a subsystem. This paper proposes the
following paradigm for software development based on
object-oriented modeling:

367

1. A dynamic model corresponding to system behav-
ior, is expressed in a message-driven model.

2. A static model corresponding to both specifica-
tions and static relations of objects, is expressed
in classes and its hierarchies.

This paradigm is called a two-layer model [3] in this
paper and the conceptual framework is shown in Fig-
ure 1. These two layers are discriminated each other
definitely in development process. The dynamic model
expresses a domain model and almost satisfies the fol-
lowing two formulas:

1. A domain model G a computation model

2. Analysis design

Figure 1. Conceptual framework of the two-layer
model. The upper dynamic model expresses be-
havior of objects. The lower static model ex-
presses relations of classes.

In the static model, however, satisfaction degree of
the requirements depends on a script language and/or a
class library to be used. In particular, domain-specific
componentware will contribute to easiness of develop-
ment. M-base promotes the growth of componentware
P91.

2.4. Domain modeling

2.4.1 Modeling process

The modeling process in M-base is formalized as shown
in Figure 2. A domain model is composed with an
object-based analysis model(0AM) and a class-based
design model(CDM), where these two models corre-
spond to the dynamic model and the static model of the
aforementioned two-layer model respectively. In the re-
mainder of this paper, “object” implies “instance” and
is discriminated from “class.”

Figure 2. Modeling process is based on the two-
layer model. The first step is called an object-
based analysis model(0AM) and corresponds to
the dynamic model. The second step is called a
class-based design model(CDM) and corresponds
to the static model.

2.4.2 Object-based analysis model

The object-based analysis model is expressed as fol-
lows:

OAM = { 0, M, T}.

0 denotes a set of objects as

0 = {.[ill,

368

where ob] is the i-th object. M denotes a set of mes-
sages as

M = {m[i,j,nl>,

where m[i,j,n] is the n-th kind of a message from o[i]
to ob]. Two functions of “sender” and “receiver” are
introduced for getting a sender object and a receiver
object of the message as

sender(m[ij,n]) = o[i]

and

receiver(m[ij,n]) = ob]

respectively. Assuming that the outside of the system
is regarded as an object with the subscript number of
zero, o[O], a set of messages from the outside and a set
of messages to the outside can be denoted by

Min = {m I sender(m) = o[O], mEM}

and

Mout = {m J receiver(m) = oIO], mEM)

respectively. T denotes a set of behavior as

T = {tkl}
where t[r] is the following message transformation:

t[r] : m[ij,n] 4 {mlj,kl,nl], mlj,k2,n2], ...}

This expression implies that the object of ob] receives
the message of m[ij,n] and then sends a sequence of
messages, mb,kl,nl], mb,kZ,n2], . . .

In short, a domain model for a distributed system
is constructed in accordance with a procedure shown
in Figure 2. At the first step, Min and Mout are con-
firmed. Then, while examining message flow processes,
0, M and T are identified.

2.4.3 Class-based design model

Next, this model is refined into the class-based design
model:

CDM = {MD, C, H},

where MD, C and H denote a set of methods, a set of
classes and a set of class hierarchies respectively.

1. External specifications
External specifications of each object are repre-
sented by a set of methods corresponding to mes-
sages which are received by the object. Suppose

M(ob]) denotes a set of messages which 001 re-
ceives, and must be a subset of M. A set of meth-
ods of ob], MD(ob]), is obtained by operations
that a subset of M(ob]) is extracted from M(ob])
as each message in the subset is equivalent to one
another in the function and that the subset is cor-
responded to a method of MD(ob]). That is, ob]
has methods which number is equal to the number
of such equivalent sets. Consequently,

MD = U j MD(0L)).

2. Class identification
A set of objects which are equivalent to one an-
other in a set of methods, can be generated from
the same class. That is, a set of classes, C, is
obtained by operations that a subset of 0 is ex-
tracted from 0 as each object in the subset is
equivalent to one another in the set of methods
and that the subset is corresponded to a class of
C. That is, if MD(o[i]) = MD(olj]), o[i] and 011 are
generated from the same class. The other objects
are corresponded to different classes respectively.

3. Class hierarchies
A set of classes which are similar to one another
in a set of methods, can compose a class hierar-
chy with inheritance. Suppose MD(c[i]) denotes a
set of methods for a class of c[i]. The following
hierarchical relation is introduced:

h[r] : c[i] 4 cb] if MD(c[i]) c MD(cL])

That is, if MD(c[i]) is a true subset of MD(cb]),
c[i] is able to become a superclass of cb] by the
following operation:

MD(clj])/new = MD(clj])/old - MD(c[i])

Furthermore, if MD(c[i]) and MD(cb]) share a true
common subset, a new class corresponding to this
common subset, c[k], is able to become a super-
class of both c[i] and cb] as follows:

h[s] : c[k] -+ c[i]
h[t] : c[k] 3 cb]

At the same time, the following operations are per-
formed:

MD(c[k]) = MD(c[i])/old n MD(clj])/old
MD(c[i])/new = MD(c[i])/old - MD(c[k])
MD(clj])/new = MD(cb])/old - MD(c[k])

Consequently,

H = {h[i]} = Ui h[i].

369

2.5. Metaphor-base modeling process for
end-users

Our conceptual framework is based on the two-layer
model and object-oriented concepts as mentioned in
subsections of 2.3 and 2.4. However, since end-users are
not familiar with these technologies, practical develop-
ment process has been provided based on metaphors of
an office as described below.

Since work flow is essential in most cases of devel-
oping a distributed system, it is natural to model the
system behavior in message flows expressing dynamic
relationships among objects. Cooperative work at an
office is expressed by using a message-driven model as
follows:

1. A person or a group to whom one or more tasks
are assigned, is considered as an object.

2. Communication means such as forms, memos,
telephone calls, mails, verbal requests, etc. be-
tween persons or groups, are considered as mes-
sages.

3. Cooperation of persons or groups is performed by
message flow.

For support of such metaphor-base modeling, each
task is often personified, and then is considered as an
object as follows in M-base:

1. If one task is assigned to a person in the real world,
an object corresponding to the person is intro-
duced for assignment of the task in the domain
model. This mapping is very natural personifica-
tion.

2. If one task is assigned to a group in the real world,
an object corresponding to the group is introduced
for assignment of the task in the domain model.
The group, that is, the task is personified as if the
task were assigned to one person in the real world.

3. If some tasks are assigned to a person or a group
in the real world, an object corresponding to each
task is introduced. The task is personified as if
each task were assigned to a different person in
the real world.

This paper gives an example of the object-oriented
office system, OOOffice, for convenience of explanation
of a metaphor-base modeling. OOOffice is a system for
meeting arrangement as shown in Figure 3, which was
originally introduced in [7]. This system is similar to
a scheduling function in an application package of a
groupware product, and then is considered a typical

370

example of a distributed system. This paper pays at-
tention to software development process for end-users
instead of application itself.

In Figure 3, objects of staffs may correspond to the
item 1. An object of a secretary may correspond to
the item 2 if secretaries in a group are in charge of the
same task in the real world. Objects of room managers
and objects of instrument managers may correspond to
the item 3 if a person or a group manage all meeting
rooms and/or all instruments for meetings in the real
world.

In M-base, the principle of object decomposition is
very simple as follows:

“Assign one task to an object.”

It must be easy for end-users to apply this principle
because they can assign each task to an object as if
to assign each task to each person under the condition
that the sufficient number of able persons exist.

Figure 3. An example of a domain model of a
distributed office system, 000ffice. There are
four kinds of objects : a secretary, three staffs
of Mr.Abe, Mr.Baba and Mr.Chiba, three room
managers of meeting-rooms and two instrument
managers of OHP and VTR.

3. Modeling tools

3.1. Framework of M -base

M-base provides the following four tools :

1. A modeling and simulation tool

2. A script language

3. A component builder

4. A user interface builder

Figure 4. Application architecture and support
tools. The inner box implies application archi-
tecture which is composed of user interface, a
dynamic model, a static model, domain-specific
componentware, and basic componentware based
on a common platform. The outer part implies
support tools of a modeling and simulation tool,
a script language, a component builder and a U1
builder.

The relations between these tools and application
architecture which is supported by these tools, are

shown in Figure 4. A dynamic model, OAM, is con-
structed by using the modeling and simulation tool
while referring to the domain-specific componentware
if necessary. A static model, CDM, is defined in the
script language while referring to the basic component-
ware as class libraries.

3.2. A modeling and simulation tool

The modeling and simulation tool is called OAM-
designer, and is used for constructing OAM by mouse
manipulation as a kind of visual programming. The
typical procedure is shown as follows :

1. Objects are defined by drag-and-drop from the
palette of icons.

2. Messages from/to outside are defined by drawing
arrow lines from outside to drain objects or from
source objects to outside and by giving its name
and attributes as parameters.

3. Messages between inner objects are defined by
drawing arrow lines from source objects to drain
objects and by giving its name and attributes as
parameters.

4. Actual values are given to attributes of the input
message from outside.

5. Message flow of OAM is simulated while displaying
messages which move successively from one object
to another object.

Examples are shown in Figure 5 and Figure 6 as a
part of the domain model of OOOffice shown in Figure
3, which is composed of three objects of Office, Room
and Abe. The Office object receives an Arrange mes-
sage for meeting arrangement, sends a Reserve message
for meeting room reservation to the Room object, and
sends an Announce message for notice of the meeting
to the staff objects such as Abe.

At the beginning of simulation, the arrow line of
the Arrange message is clicked and ’attribute setting’
is selected from a command menu. Then a balloon
is displayed on the left side. This balloon requires a
user to fill actual values in attributes of the Arrange
message. After giving values to the three attributes of
the date, time and the meeting name, the balloon in
Figure 5 shows “Arrange a meeting of 5th 1l:OO.”

Then, let’s select ’message sending’ from a command
menu. The screen changes to Figure 6. The balloon of
the Office object shows the Reserve message to be sent
to the Room object a “Reserve a meeting-room of 5th
11:OO.”. The actual values of attributes of the &serve

371

message have been already set. At this time, a user can
confirm actions of the Office object which received the
Arrange message. Simulation will continue by selecting
'message sending' of a command menu while confirming
message flow.

Figure 5. Input of actual values from outside to
attributes of the Arrange message in 000ffice.
Three blanks in the Arrange message are filled
as the date = ' 5 ' , the start time = '11' and the
meeting name = 'meeting'.

3.3. A script language

3.3.1 Design concepts

Since it is not suitable to define complex logic for mes-
sage flow control by iconic programming, it is almost
inevitable to make end-users use a script language. In
M-base, the script language, Hoop, is used for defin-
ing the static model of CDM with class definitions,
although basic frameworks of class definitions are gen-
erated from the dynamic model of OAM.

In comparison with conventional object-oriented
languages, the significant feature of Hoop is that com-
munication among objects is performed by a set of
messages instead of a message, for implementation of
flexible work flow. For example, let's consider a work

flow system. Generally, the whole work flow is con-
trolled by the meta-system. Therefore, it is difficult to
understand system behavior because both the object-
level and the meta-level must be considered. The
message sets omit this difficulty and enable end-users
to consider system behavior of only the object-level
and to construct pure cooperative systems based on
metaphors of communication at offices as described bel-
low.

0
cuter

Figure 6. Message sending. After the Office ob-
ject received the Arrange message, it transformed
the message to the Reserve message for meeting-
room reservation and will send the message to the
Room object.

3.3.2 Syntactic rules

The syntax of the message set in Hoop is as follows :

M ::= M' 11 [cond] M'
M' ::= Ms 1 1 Mp 11 X
Ms ::= {M, M, . . . , M}
Mp ::= {M I M I . . . I M}
X ::= (obj, msg)

where meta-symbols of '::=' and ' 1 1 ' imply 'equal to'
and 'or' respectively. 'msg' and 'obj' imply a message
and its receiver object respectively. 'cond' implies a

372

condition for sending the following message. Semantics
is described in remainder of this subsection and the
details of specifications are shown in [14].

3.3.3 Sequential message sets

When each message among a message set should be
executed sequentially, the message set is expressed as
follows :

{M, M, . . . M}

The object which received this message set, executes
the first message and passes the remainder of the mes-
sage set to the next object.

For example, consider the following message set is
sent to the objl object :

{(objl, msgl), (obj2, msg2), (ob$, msg3))

The objl object executes the msgl message, and then
send the following remainder of a message set to the
obj2 object :

{ (O W , msg2), (OW, msg3))

The obj2 object executes the msg2 message, and then
send the following remainder of a message set to the
obj3 object :

(obj3, msg3)

Finally, the obj3 executes the msg3 message.
This example may correspond to the following work

flow in three sections of a mail-order firm when an order
is received :

1. The stock of the ordered goods is checked.

2. The accounts are calculated.

3. The invoice is made.

3.3.4 Concurrent message sets

When all messages among a message set can be ex-
ecuted concurrently, the message set is expressed as
follows :

For example, consider the following message set is sent
from some object :

{(objl, msgl) 1 (obj2, msg2) 1 (obj3, msg3))

The three objects of objl, obj2 and obj3 execute the
messages of msgl, msg2 and msg3 respectively.

As shown in the syntactic rule, arbitrary combina-
tion of the sequential message sets and concurrent mes-
sage sets are admitted. For example, when the afore-
mentioned work flow of the mail-order firm is changed
to the flow that tasks of the item 1 and the item 2
are executed concurrently, the following message set is
sent:

3.3.5

Consider OOOffice of Figure 5 and Figure 6 again as a
typical example of groupware. M-base generates the
message sets such as (Room , Reserve) and (Abe ,
Announce) automatically after receiving (Office , Ar-
range). A user may want to be informed the result of
failure if the reservation of a meeting room is failed.
At that time, The user modifies the message set to the
following message set:

An example of a Hoop program

{ (Room , Reserve) , [fail] (Office , NoReserve))

Next, when the user wants to get the reply of the An-
nounce message, the message set is modified to the
following message set:

{ (Abe , Announce) , (Office, Attend))

Furthermore, since the Announce message is sent to
three staff objects of Abe, Baba and Chiba concur-
rently, the message set is modified to the following mes-
sage set:

{ { (Abe , Announce) , (Office , Attend) } I
{ (Baba , Announce) , (Office, Attend) } 1
{ (Chiba , Announce) , (Office, Attend) })

4. Discussions

4.1. Three kinds of message expression

M-base supports the following three kinds of mes-
sage expression:

1. A message flow diagram

2. A message set

3. A message transformation

A message flow diagram is drawn by the model-
ing and simulation tool. This is the easiest way for
end-users since the system generates the correspond-
ing codes in the script language based on simulation.

373

However, it is not suitable to define complex logic for
message flow control by iconic programming.

A message set is described in the script language.
This is an easier way for end-users since the message
sets correspond to work flow at their office. Sometimes,
however, a common object which is included among
many message sets, may be required to add exception
handling for one of them. It is not easy for end-users
to solve the problem of how to assign a new task to the
common object.

A message transformation is derived from the mes-
sage flow diagram and the message sets. Sometimes,
however, end-users may define message transforma-
tions of some objects directly in the script language.
This is because specifications of common components
must be defined independent of the individual work
flows.

4.2. Control of message flow

These three ways of message expression can be con-
sidered from the viewpoint of message flow control. M-
base supports the following two ways of message flow
control:

1. Integrated control

2. Distributed control

Integrated control of massage flow is performed by a
message set which specifies one or more paths of mes-
sage flow. This way corresponds to cases where work
flow of a task is decided at the starting point in the
real world. It is easy to modify work flow by rewriting
the message set.

Distributed control of message flow is performed by
a message transformation which specifies only the re-
lation of an input message and one or more output
messages. A path of message flow is expressed by a
sequence of message transformations. It may be risky
to modify work flow by changes of message transfor-
mation because the change may cause side effects of
unintentional change of other work flows.

Consequently, M-base recommends users to specify
work flow by message sets if possible. On the other
hand, objects in high commonality of a domain should
be provided as domain-specific component which spec-
ifications are defined by message transformations.

4.3. Componentware

In M-base, domain-specific componentware is ex-
tracted easily from software architecture of a devel-
oped application system since the domain model is con-

structed based on an object-oriented model. The com-
ponentware is classified into the following three cate-
gories on granularity of components:

1. An application framework

2. A design pattern

3. A class library

The application framework shows software architecture
of an application system. The class library supplies
components of classes. The design pattern shows how
to combine several related classes for embedding into
the application framework. Typical examples of gen-
eral design patterns are given by E. gamma et al.[9, 121.

4.4. Modeling process

Most of conventional 00A/OOD techniques pro-
pose to identify objects or classes from the real world
at the first step as Rumbaugh’s object model [17] or
Shlaer’s information model [MI. By emphasizing ben-
efits of data abstraction and encapsulation, object-
oriented technologies are apt to be considered as data-
oriented approach which is an antithesis against the
conventional thesis of function-oriented approach such
as structured analysis.

For example, some of conventional 00A/OOD tech-
niques propose to consider nouns in problem specifica-
tions as objects and to consider verbs as methods. This
idea may be useful for banking systems in which prob-
lem domain has been refined enough and a data model
has been defined also in conventional systems. If not,
too many objects and methods will be selected in vain,
especially in an office information system.

In a distributed system for end-user computing,
however, the dynamic model at a macro level is re-
quired first since the requirements can not be speci-
fied exactly at the initial stage. In M-base, modeling
and simulation of work flow are repeated first for con-
structing the dynamic model based on the very simple
principle of “Assign one task to an object.”

5. Conclusions

One solution was given for two indispensable re-
quirements of new fields with explosive increase in ap-
plication software on distributed systems, namely, “a
domain model E a computation model” and “analysis

design.” The practical development process was de-
rived from the two-layer model. That is, the dynamic
model corresponding to system behavior, is expressed
in a message-driven model, and the static model cor-
responding to both specifications and static relations

374

of objects, is expressed in classes and its hierarchies.
This modeling process is supported by the modeling
and simulation tool and the script language. Since un-
trained end-users are increasing still, further study is
needed to enrich domain-specific componentware.

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

I181 s. Shlaer and S. J. Mellor. Object-On’ented Systems
Analysis : Modeling the World in Data. Prentice Hall,
1988.

References
[19] J. Udell. Componentware. BYTE, pages 46-56, May

1994.
[20] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Design-

ing Object- Oriented Software. Prentice Hall, 1990.
G. Booch. Object-oriented design with applications.
Benjamin/Cummings, 1991.
T. Chusho. End-user computing,(in japanese). Jour-
nal of Znformataon Processing Society of Japan,

T. Chusho and H. Haga. A multilingual modular pro-
gramming system for describing kn owledge informa-
tion processing systems. Proc. the 10th World Com-
puter Congress IFIP’86, pages 903-908, 1986.
T. Chusho, Y. Konishi, N. Hama, and M. Yoshioka.
Application software development environment, m-
base, based on the concept of “domain model a com-
putation model,” (in japanese). Information Process-
ing Society of Japan, SIG on Software Engineering,
96(41):9-16, May 1996.
P. Coad and E. Yourdon. Object-Oriented Design.
Prentice Hall, 1991.
0. Dah1 and C. A. Hoare. Hierarchical program
structures. Structured Programming, Academic Press,
pages 175-220, 1972.
M. Ejiri, Y . Nakano, and T. Chusho. Artificial Zntel-
lignce, (in Japanese), Shokodo, 1988.
R. G. Fichman and C. F. Kemerer. Object-oriented
and conventional analysis and design methodologies.
ZEEE Trans. Computer, 25(10):22-39, Oct. 1992.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.
A. Goldberg and D. Robson. Smalltalk-80 : The Lan-
guage and ats Zmplementataon. Addison Wesley, 1983.
J. Grudin. Computer-supported cooperative work :
history and focus. IEEE Trans. Computer, 27(5):19-
26, May 1994.
R. Helm. Patterns in practice. OOPSLA ’95, ACM
SIGPLAN Notices, 30(10):337-341, Oct. 1995.
C. Hewitt and H. Baker. Laws for communicating
parallel processes. Proc. the 7th World Computer
Congress IFZP’77, pages 987-992, 1977.
Y. Konishi and T.Chusho. Design of an object-
oriented language for analysis and design of cooper-
ative systems, and its feasibility study (in japanese).
Proc. Object-Oriented Software Technology ’96 Simpo-
sium, pages 89-94, July 1996.
B. Liskov and S. Zills. Programming with abstract
data types. ACM SZGPLAN Notices, 9(4):50-59, Apr.
1974.
D. E. Monarchi and G. I. Puhr. A research typology
for object-oriented analysis and design. Comm. A CM,
35(9):35-47, Sept. 1992.

32(8):950-960, Aug. 1991.

375

