
worse than selling none at all
because we had so tuned the
original design that it could
not be upgraded easily. Costs
mounted; customers com-
plained; management got
c*

Eventually, we started over,
with a new design and a new
prototype. This time we were
careful to write the specifica-
tions a&r prototyping and to
use a formal spiral-develop-
ment program.

Tqm&rtwo.Anotherpro-
totype was too good at showing
the system concept The idea
was to have a voice-response
system programmed to take
trouble reports and check on
network and repair status while
the customer was on-line.

The prototype anticipated
language differences and let
callers choose a language. We
set up a special lab to show how
easy it was to program and
study the key human interac-
tions.

Many customers visited the
lab, and they loved it. One
even did a field trial to handle a
glut of trouble reports during a
flood and later we developed a
testimonial from them as to
what this new technology
could do.

Unfortunately, although
customers loved the proto-
type, they did not love the
price. Because we could not
patent the system design, by
showing the prototype we dis-
closed how to build such a sys-
tem. Instead of paying us, our

potential customers built
their own!

P rototyping will become
an even more imuortant

design tool, as we deal with the
problems caused by complex-
ity. But no tool will replace the
skill and talent of the profes-
sional software designers. +

REFERENCES
1, M. Thomas, “Limits and

Customers are Driving Change,”
IEEE Sojhwe, Mar. 1992, p. 10.

2. W.W Royce, “Software Require-
ment Analysis, Sizing & Costing,”
in Pramcal Strategies fw Dcueloping
Large Sofiware System, E. Horovitz,
ed., Addison-Wesley, Reading,
Mass., 1975.

3, L. Bernstein and CM. Yuhas,
“Chain of Command,” Unzx I&
vim, NOV. 1987, pp. 50-57.

4. L. Bernstein and JJ. Appel, “Re-

quirernents or Promtyping? Yes!,”
Pm Int’l Conf: Sofhnare Eng. for
T&ommunicatm~ Switching Systems,
IEEE Press, New York, 1986.

Lmwtnce Bernstein is the operatim
syavt.s nice president ofAT& T Netwwk

Systems and executive dimctor of
AT&T Bell Labwatwies, where he 15

mpmsible fw the technology mppwting
xfiwa~r-?ynenu dtvelqmmt.

Bernstein leceived a BSEEJivm Rmxlaw
Polytechnic Imtitute and an MSEEfiwn

New York lhiveniq. He is a f&a of the
IEEE, an indu.m%dfeUow of Ball St&

Centwfo~ Info?7?m1on and
Cmmunicatm Stiences, anda member of

Tau Beta Pi and Eta h;?ppa Nu.

WMT MAKES SOFWU!ARE
TOOLS SUCCESSFUL?

An invisible obstacle to the practical use of software tools is a perception gap
TAM a+~sHo

Meiji University
between users and tool developers - a gap that neither can overcome alone.

S oftware engineering
started more than 2 0 years

ago, but the software crisis has
yet to be solved. Although
many new paradigms have
been proposed, only a few have
caught on. When contrasted
to the progress of hardware
technology, this appears to be
puzzling. I believe the reason
lies in the essential difference
between hardware and soft-
ware - a difference that
makes paradigm shifts in soft-

ware take much longer.
The heart of this differ-

ence is the very nature of the
software and hardware itself.
The terms we use to describe
these disciplines and the en-
vironments in which they op-
erate are revealing. Hard-
ware is described in terms of
devices and assembly lines;
software is described in terms
of processes and systems.
Hardware has to do with phys-
ics and concrete materials.

Software has to do with logic
and attitudes like user satisfac-
tion and other hard-to-mea-
sure attributes.

Progress in hardware is
largely a matter of exceeding
some threshold or breaking
some barrier. Progress in
software has to do with pro-
cess change and a change in
attitudes and predispositions
- the development culture.

Although attempts have
been made to draw analogies

IEEE SOFTWARE 0740.7459/93/09W/0063/503 00 0 IEEE 63

^_“_. .._. - .-

R&D
personnel

Coordinator User

H Perception gap
-I I

to hardware through such COIJ-

cepts as factory and clean-
I-oom, it is impossible to dupli-

cate the processes that have
made hardware advances pos-
sible. The best n-e can hope for
is to adopt some of the hard-
ware-production processes
that help ensure qualitI\-.

Thus, to move software
technology ahead, not 0111)
must we develop ne\v pro-
cesses, \ve lllllst txing atmut

cultur;ll changes as \vell.
I base these ideas on more

than 15 l-ears’ experience de-
veloping. manv kinds of soft-
\vare tools for IIitachi facto-
ries, some of which have been
in place for more than a de-
cade. This experience has
given me considerable insight
into why some tools are suc-
cess&l and others are not.

PROBLEMS OF
TECHNOLOGY TRANSFER

I have been engaged in soft-
ware-engineering research
and development to improve
the productivity of large-scale
software since 1974. During

that time, I have made a nun-
her of research contributions,
all of which involved technol-
o,q’ transfer to some degree.
Some were successful; others
were not. Among the failures, 1
began to see a common theme:
I had not sufficiently under-
stood the user’s perception of
the programming problems in
the initial stages of research
and development. Conse-
quentl!-, I did not have an\’ sce-
nario for transferring new
technoloLq, step by step, ac-
cording to that perception. I
was able to use the insight
gained from these experiences
to ensure successful techno-
0,~ transfers, which 1 describe
later.

The project that best exem-
plifies this lack ofunderstand-
ing was a late 1970s develop-
ment of a progran-trans-
formation tool.’ The tool was
an interactive optimization
system for applying structured
programming to a field that re-
quired considerable object ef-
ficiency. LIy approdch was to

first have the programmers
produce a structured program

and then produce an object-ef-
ficient program. Optimization
WCS done with a combination
of primitive commands to
avoid cataloging too many
transformation rules. The
system automatically verified
all optimization commands,
which eliminated retesting and
let us use a structured pro-
gram instead of the opti-
mized program during
maintenance. I thought au-
tomatic correctness proof of
the optimization commands
would be a welcome relief to
the programmers.

However, when I tried to
complete the technolog!
tr2nsfer of this system bv suc-
cessfully educating its users,
I simply could not convince
most programmers to use it.
After some investigation, I
beg-an to see \vliy. -1s a de-
veloper of application soft-
ware for a real-time svstem,
I had, of course, foc&ed on
perfornrance enhancement.

Unfortun-
ately, mv f&zs
had also been
on algorithms
at a task OJ

module level,
not 011 the cod-
ing techniques
themselves.
Consequently,
the program-
mers had to de-
velop skills be-
yond their
normal level to
use the optimi-

cerned that such an approach
would not be well-received.

SUCCESS FACTORS

That and other experiences
taught me that there are three
requirements for successful
technology transfer. Figure 1
illustrates these requirements:

* Perception transfer from
users.

l Xchnology transfer to
users.

+ Coordination lxtuwm
users and R&D personnel.

Examples of great successes
are Unix, C and E~nacs - all of
which satisfy these require-
ments. However, in all cases,
the developers were them-
selves the users, so they could
be ideal coordinators and
could easily overcome percep-
tion and technology gaps.

M’hen developing tools for
large-scale sohvare, however,
it is difficult to satisfi- these re-
quirements because R&D per-

sonnel a r e

NOT KNOWING
HOW THE
USER PERCEIVES
THE PROBLEM
IN THE INITIAL
STAGES OF
RESEARCH CAN
HAVE SOME
COSTLY
CONSEQUENCES.

zation coni- scale as 32ybit
lnands effectively. I had acm-
ally increased their responsi-
bilities, not decreased them.

Had I contacted the pro-
grammers earlv on and inter-
lielved them about their needs
or done some feasibility stud-
ies, I would have easily dis- real-time control sof6vare.’

machines replaced l&bit em-
bedded computers, and im-
proving software reliability
and producti\-ity took on a new
importance. 0ur task MBS to
develop a structured program-
ming language for describing

often not the
end users. For-
tunately, I had
two successes
that gave me a
basis for com-
paring suc-
cesses and fail-
urcs.

Sactess 1. In
the early 19705
real-time con-
trol software
became large-

SEPTEMBER 1993 64

My first step was to contact a computers replaced eight-bit
coordinator who was responsi- machines. At that time, how-
ble for solving these problems ever, the programming envi-
in a factory that produced em- ronment for microcomputer
bedded computer systems. We software supported only as-
then began to develop a struc- sembly language and a primi-
tured program- tive debugger.
ming language, Our goal was to

AT THE
TECHNOLOGY-
TRANSFER
STAGE,
EMPHASIZE
USER BENEFITS,
NOTTHE NEW
TECHNOLOGY.
ALSO, GET RID
OF ANY
PSYaOmGKAl
BARRIERS.

- --
SPL. During
development,
he often ar-
ranged meet-
ings between
the users and
ourselves to
clarify user re-
quirements.

After devel-
opment, he
carefully se-
lected the first
user group, and
we responded
quickly to the
users’ com-
plaints about
performance,
ease ofwriting, and so on. SPL
became quite popular and
soon replaced conventional
languages like assembly and
Fortran.

In the beginning, to over-
come the user’s fear that SPL
would somehow degrade pro-
gram performance, we sup-
ported the same task-con-
trol primitives that
assembly language did and
we emphasized the benefits
of integrating the manage-
ment of data shared by tasks
rather than the benefits of
data abstraction.

In 1977, we completed the
paradigm shift to structured
programming as a cultural
change in programming style,
and SPL has been used ever
since.

HITS (Highly Interactive
Testing and Debugging Sys-
tem),3 on a mainframe com-
puter. This coordinator
played the same role as the
coordinator in the first exam-
ple.

Success 2. Around 1980, rn-
crocomputer software became
large-scale as lh-bit micro-

HITS denied the assump-
tion that most programmers
were making: programs had to
have errors, and therefore de-
bugging was essential. To
help them change this
mindset, we set about grad-
ually changing their cultural
perspective. In the begin-
ning, for example, we sup-
ported symbolic testing facil-
ities for both a high-level
language and assembly lan-
guage, and we emphasized the
benefits of symbolic debug-
ging rather than the benefits of
testing with a test-procedure
description language.

In 1982, we completed the
cultural change from intensive

--

IEEE SOFTWARE

provide a soft-
ware tool for
testing large-
scale micro-
computer soft-
ware using
mainh-ames.

I again con-
tacted a coordi-
nator, this one
in a factory that
produced com-
munications
systems using
68000 micro-
computers, and
we began to de-
velop a testing
system, called

debugging of assembly pro-
grams to the intensive testing
of high-level language pro-
grams, and HITS is still being
used.

STEP-BY-STEP SUCCESS

These lessons seem basic,
but they are difficult to put into
practice, especially when you
are developing tools for large-
scale software. I offer the fol-
lowing steps as a possible
guide:

+ At the first stage of
R&D, try to be aware of the
users’ real problems.

+ At the technology-trans-
fer stage, emphasize user ben-
efits rather than new technol-
ogy and, at the same time, rid
users of psychological barriers.

+ If you find it difficult to
grasp the users’ perception of
the problem and to transfer the
technology without help, find
a coordinator who is familiar
with the users’ culture.

K nowing the users’ per-
ception of the problem

early in tool development can
help ensure a successful tech-
nology transfer. It can help
avoid the trap of assuming
that success with small-scale
software translates to success
with large-scale software, for
example.

This is important because
many are turning to object-
oriented technology to solve
our biggest challenge today:
developing large-scale soft-
ware for distributed systems. It
is easy to assume that having a
successful object-oriented
programming methodology
translates into a successful ob-
ject-oriented design. Such an
attitude fails to consider the in-
herent difficulties in designing

large-scale software.
A better approach is to use

coordinators to studv the
users’ real problems and intro-
duce working hypotheses on
causal relations between ob-
ject-oriented concepts and the
solutions of those problems for
a feasibility study. In the mean-
time, both large and small pro-
jects can enjoy more successful
technology transfers by apply-
ing the simple principles Ibe
outlined. +

ACKOWLEDGMENTS
I thank Toshihiro Havashi and

,Mitwyuki Maui for their coordination
of SPL and HITS, respecnvely.

REFERENCES
1. 1: Chusho, “A Good Program = A

Srmctured Program + Opmniza-
don Commands,” Pm. ht’l Fedm-
tion fw 1~$mmztion Proc&2g,
North-Holland, Amsterdam, 1980,
pp. 269-274.

2. T Chusho and T Hayashi, “Perfor-
mance Analyses of Paging Algo-
rithms for Compilation of a Highly
,Modularized Program,” IEEE
7i-am. Sofhare Eng., Mar. 198 1, pp.
248.254.

3, T Chusho et al., “HITS: A Syn-
bolic Testing and Debugging Sys-
tem for ,Multilingual ,Microcom-
puter Sofhvare,” Pm. xat4
Computer Cof, IEEE CS Press,
Los Alamitos, Calif., 1983, pp. i3-
80.

65

