worse than selling none at all
because we had so tuned the
original design that it could
not be upgraded easily. Costs
mounted; customers com-
plained; management got
c .
Eventually, we started over,
with a new design and a new
prototype. This time we were
careful to write the specifica-
tions after prototyping and to
use a formal spiral-develop-
ment program.

Trap number two. Another pro-
totype was too good atshowing
the system concept. The idea
was to have a voice-response
system programmed to take
trouble reports and check on
network and repair status while
the customer was on-line.

TAKESHI CHUSHO
Meiji University

The prototype antcipated
language differences and let
callers choose a language. We
setup a special lab to showhow
easy it was to program and
study the key human interac-
tions.

Many customers visited the
lab, and they loved it. One
even did a field trial to handle a
glut of trouble reports during a
flood and later we developed a
testimonial from them as to
what this new technology
could do.

Unfortunately, although
customers loved the proto-
type, they did not love the
price. Because we could not
patent the system design, by
showing the prototype we dis-
closed how to build such a sys-
tem. Instead of paying us, our

potental customers built
their own!

rototyping will become

an even more important
design tool, as we deal with the
problems caused by complex-
ity. But no tool will replace the
skill and talent of the profes-
sional software designers. ¢

REFERENCES
1. M. Thomas, “Limits and
Customers are Driving Change,”
IBEE Software, Mar. 1992, p. 10.

. W.W. Royce, “Software Require-
ment Analysis, Sizing & Costing,”
in Practical Strategies for Developing
Large Software Systems, E. Horovitz,
ed., Addison-Wesley, Reading,
Mass., 1975.

. L. Bernstein and C.M. Yuhas,
“Chain of Command,” Unix Re-
view, Nov. 1987, pp. 50-57.

4. L. Bernstein and J.J. Appel, “Re-

i
*

quirements or Prototyping? Yes
Proc. Int’l Conf. Software Eng. for
Telecommunication Switching Systems,
IEEE Press, New York, 1986.

Lawrence Bernstein is the operations
systemns vice president of AT& T Network
Systems and executive director of
AT & T Bell Laboratories, where be is
responsible for the technology supporting
software-systems development.
Beranstein received a BSEE from Rensselaer
Polytechnic Institute and an MSEE from
New York University. He is a fellow of the
IEEE, an industrial fellow of Ball State
Center for Information and
Communication Sciences, and a member of
Tau Beta Pi and Eta Kappa Nu.

Address questions about this essay to
Bernstein at AT&T Bell Laboratories, Rm.
4WDI2C, 184 Liberty Corner Rd.,
Warren, Nf 07059; Internet
attmail!l.bernstein.

WHAT MAKES SOFTWARE
TOOLS SUCCESSFUL?

Aninvisible obstacle to the practical use of software tools is a perception gap
between users and fool developers — a gap that neither can overcome alone.

SOftware engineering

started more than 20 years
ago, but the software crisis has
yet to be solved. Although
many new paradigms have
been proposed, only a few have
caught on. When contrasted
to the progress of hardware
technology, this appears to be
puzzling. I believe the reason
lies in the essential difference
between hardware and soft-
ware — a difference that
makes paradigm shifts in soft-

ware take much longer.

The heart of this differ-
ence is the very nature of the
software and hardware itself.
The terms we use to describe
these disciplines and the en-
vironments in which they op-
erate are revealing. Hard-
ware is described in terms of
devices and assembly lines;
software is described in terms
of processes and systems.
Hardware has to do with phys-

ics and concrete materials.

Software has to do with logic
and attitudes like user satisfac-
don and other hard-to-mea-
sure attributes.

Progress in hardware is
largely a matter of exceeding
some threshold or breaking
some barrier. Progress in
software has to do with pro-
cess change and a change in
attitudes and predispositions
— the development culture.

Although attempts have
been made to draw analogies

IEEE SOFTWARE

0740-7458/93,/0800,/0063/$03.00 © {EEE

63

Perception gap '

Perception
transfer

transfer
R&D Coordinator User
personnel
, Perception gap |

Figure 1. Requirements for the successful transfer of a software tool to the user.
An essential ingredient is the transfer coordinator, who belps align the researcher’s
perception about what the user needs and the user’s perception about what the tool

shoudd do.

to hardware through such con-
cepts as factory and clean-
room, it is impossible to dupli-
cate the processes that have
made hardware advances pos-
sible. The best we can hope for
is to adopt some of the hard-
ware-production processes
that help ensure quality.

Thus, to move software
technology ahead, not only
must we develop new pro-
cesses, we must bring about
cultural changes as well.

I base these ideas on more
than 15 vears’ cxperience de-
veloping many kinds of soft-
ware tools for Hitachi facto-
ries, some of which have been
in place for more than a de-
cade. This experience has
given me considerable insight
into why some tools are suc-
cesstul and others are not.

PROBLEMS OF
TECHNOLOGY TRANSFER

I'have been engaged in soft-
ware-engineering research
and development to improve
the productvity of large-scale
software since 1974. During

that time, I have made a num-
ber of research contributions,
all of which involved technol-
ogy transfer to some degree.
Some were successtul; others
were not. Among the failures, 1
began to see a common theme:
I had not sufficiently under-
stood the user’s perception of
the programming problems in
the inidal stages of research
and development. Conse-
quently, Idid nothave any sce-
nario for transferring new
technology, step by step, ac-
cording to that perception. |
was able to use the insight
gained from these experiences
to ensure successful technol-
ogy transfers, which 1 describe
later.

The project that best exem-
plifies this lack of understand-
ing was a late 1970s develop-
ment of a program-trans-
formation tool.! The tool was
an interactive optimization
system for applying structured
programming to a field thatre-
quired considerable object ef-
ficiency. My approach was to
first have the programmers
produce a structured program

and then produce an object-ef-
ficient program. Optimization
was done with a combination
of primitive commands to
avoid cataloging too many
transformation rules. The
system automatcally verified
all optimization commands,
which eliminated retesting and
let us use a structured pro-
gram instead of the opt-
mized program during
maintenance. I thought au-
tomatic correctness proof of
the optimization commands
would be a welcome relief to
the programmers.

However, when 1 tried to
complete the technology
transter of this system by suc-
cessfully educating its users,
I simply could not convince
most programmers to use it.
After some Investigation, I
began to see why. As a de-
veloper of application soft-
ware for a real-time system,
I had, of course, focused on
performance enhancement.

Unfortun-
ately, my focus
had also been
on algorithms
at a task or
module level,
not on the cod-
ing techniques
themselves.
Consequently,
the program-
mers had to de-
velop skills be-
vond their
normal level to
use the optimi-
zation com-
mands eftectively. 1 had actu-
ally increased their responsi-
bilities, not decreased them.

Had I contacted the pro-
grammers early on and inter-
viewed them about their needs
or done some feasibility stud-
ies, I would have easily dis-

NOT KNOWING
HOW THE

USER PERCEIVES
THE PROBLEM
IN THE INITIAL
STAGES OF
RESEARCH CAN
HAVE SOME
COSTLY
CONSEQUENCES.

cemned that such an approach
would not be well-received.

SUCCESS FACTORS

That and other experiences
taught me that there are three
requirements for successful
technology transfer. Figure 1
illustrates these requirements:

¢ Perception transfer from
users.

¢ Technology transfer to
users.

¢ Coordination between
users and R&D personnel.

Examples of greatsuccesses
are Unix, C and Emacs—all of
which satisfy these require-
ments. However, in all cases,
the developers were them-
selves the users, so they could
be ideal coordinators and
could easily overcome percep-
tion and technology gaps.

When developing tools for
large-scale software, however,
itis difficult to sadsfy these re-
quirements because R&D per-
sonnel are
often not the
end users. For-
tunately, [had
WO successes
that gave me a
basis for com-
paring suc-
cesses and fail-
ures.

Suceess 1. In
the early 1970s,
real-time con-
trol software
became large-

scale as 32-bit |

machines replaced 16-bit em-
bedded computers, and im-
proving software reliability
and productivity took on a new
importance. Our task was to
develop a structured program-
ming language for describin

real-time control software.-

64

SEPTEMBER 1893

My first step was to contact a

coordinator who was responsi-
coordinator who was responsi

ble for solving these problems
in a factory that produced em-
bedded computer systems. We
then began to develop a struc-
tured program-
ming language,
SPL. During
development,
he often ar-
ranged meet-
ings between
the users and
ourselves to
clarify user re-
quirements.

After devel-
opment, he
carefully se-
lected the first
user group, and
we responded
quickly to the
users’ com-
plaints about
performance,
ease of writing, and so on. SPL
became quite popular and
soon replaced conventional
languages like assembly and
Fortran.

In the beginning, to over-
come the user’s fear that SPL
would somehow degrade pro-
gram performance, we sup-
ported the same task-con-
trol primitives that
assembly language did and
we emphasized the benefits
of integrating the manage-
ment of data shared by tasks
rather than the benefits of
data abstraction.

In 1977, we completed the
paradigm shift to structured
programming as a cultural
change in programming style,
and SPL has been used ever
since.

Success 2. Around 1980, mi-
crocomputer software became
large-scale as 16-bit micro-

AT THE
TECHNOLOGY-
TRANSFER
STAGE,
EMPHASIZE
USER BENEFITS,
NOT THE NEW
TECHNOLOGY.
ALSO, GET RID
OF ANY
PSYCHOLOGICAL
BARRIERS.

computers replaced eight-bit

machines. At that ime, how-

ever, the programming envi-
ronment for microcomputer
software supported only as-
sembly language and a primi-
tive debugger.
Our goal was to
provide a soft-
ware tool for
testing large-
scale micro-
computer soft-
ware using
mainframes.

I again con-
tacted a coordi-
nator, this one
in a factory that
produced com-
munications
systems using
68000 micro-
computers, and
we began to de-
velop a testing
system, called
HITS (Highly Interactive
Testing and Debugging Sys-
tem),’ on a mainframe com-
puter. This coordinator
played the same role as the
coordinator in the first exam-

le.

HITS denied the assump-
tion that most programmers
were making: programs had to
have errors, and therefore de-
bugging was essential. To
help them change this
mindset, we set about grad-
ually changing their cultural
perspective. In the begin-
ning, for example, we sup-
ported symbolic testing facil-
ities for both a high-level
language and assembly lan-
guage, and we emphasized the
benefits of symbolic debug-
ging rather than the benefits of
testing with a test-procedure
description language.

In 1982, we completed the
cultural change from intensive

debugging of assembly pro-
grams to the intensive testing
of high-level language pro-
grams, and HITS is still being

used.

STEP-BY-STEP SUCCESS

These lessons seem basic,
but they are difficult to putinto
practice, especially when you
are developing tools for large-
scale software. I offer the fol-
lowing steps as a possible
guide:

¢ At the first stage of
R&D, try to be aware of the
users’ real problems.

¢ At the technology-trans-
fer stage, emphasize user ben-
efits rather than new technol-
ogy and, at the same time, rid
users of psychological barriers.

¢ If you find it difficult to
grasp the users’ perception of
the problem and to transfer the
technology without help, find
a coordinator who is familiar
with the users’ culture.

Knowing the users’ per-
ception of the problem
early in tool development can
help ensure a successful tech-
nology transfer. It can help
avoid the trap of assuming
that success with small-scale
software translates to success
with large-scale software, for
example.

This is important because
many are turning to object-
oriented technology to solve
our biggest challenge today:
developing large-scale soft-
ware for distributed systems. It
is easy to assurne that having a
successful object-oriented
programming methodology
translates into a successful ob-
ject-oriented design. Such an
attitude fails to consider the in-
herent difficulties in designing

large-scale software.

A better approach is to use
coordinators to study the
users’ real problems and intro-
duce working hypotheses on
causal relations between ob-
ject-oriented concepts and the
solutions of those problems for
a feasibility study. In the mean-
time, both large and small pro-
jects can enjoy more successful
technology transfers by apply-
ing the simple principles I've
outlined.

ACKOWLEDGMENTS

1 thank Toshihiro Hayashi and
Mitsuyuki Masui for their coordination
of SPL and HITS, respectively.

REFERENCES
1. 'T. Chusho, “A Good Program = A
Structured Program + Optimiza-
tion Commands,” Proc. Int’l Federa-
tion for Information Processing,
North-Holland, Amsterdam, 1980,
pp. 269-274.

. T. Chusho and T. Hayashi, “Perfor-
mance Analyses of Paging Algo-
rithms for Compilation of a Highly
Modularized Program,” IEEE
Trans. Software Eng., Mar. 1981, pp.
248-254.

3. T. Chushoetal,, “IIITS: A Sym-
bolic Testing and Debugging Sys-
tem for Multilingual Microcom-
puter Software,” Proc. Nat'/
Computer Conf., IEEE CS Press,
Los Alamitos, Calif., 1983, pp. 73-
80.

o

Takeshi Chusho is a professor of computer
science at Meiji University, Japan. At the
time this essay was written, be was a senior
researcher at Hitachi, Ltd.’s Systems
Development Laboratory. His research
interests are object-oriented
technology and its applications.
Chusho recerved a BS and an MS in
electronic engineering and a PhD in
computer science, all from the University of
Tokyo. He is a member of the IEEE
Computer Society.

Address questions about this essay to Chusho
at Meiji University, CS Dept., 1-1-1
Higashimita, Tama-ku, Kawasaki, 214
TFapan; e-mail: chusho@c.meiji.ac.jp.

IEEE SOFTWARE

65

