INFORMATION PROCESSING 86, H.-J. Kugler (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1986

903

A MULTILINGUAL MODULAR PROGRAMMING SYSTEM FOR
DESCRIBING KNOWLEDGE INFORMATION PROCESSING SYSTEMS

Takeshi CHUSHO and Hirohide HAGA
Systems Development Laboratory, Hitachi Ltd.
1099, Ohzenji, Asao-ku, Kawasaki 215, Japan

For describing knowledge information processing systems, many new paradigms have been proposed and
each of them has inherent features. This paper proposes a multilingual modular programming system
supporting these paradigms for general use. An intermodule relation is described in an object-oriented
programming language because it is suitable for the natural description of a global computation model.
Each module is described in one of the conventional languages which is suitable for an exact description of
the module function. A composite language, Super-LONLI is developed for supporting this system to mix
an object-oriented language and conventional languages while clarifying the boundaries among them
instead of unifying them with semantic ambiguity. In particular, this language overcomes such difficulties
in mixing logic and object-oriented programming languages as backtracking vs. side effect, the close
world assumption vs. object hierarchy with inheritance rules, and sequentiality vs. concurrency.

1. INTRODUCTION

The essence of modern programming methodologies
for large-scale software development is considered as
modularization techniques such as data abstraction,
top-down development by stepwise refinement and
structured programming which were proposed in the
1970's. These modularization techniques divide a
program into modules so that each module has only
one function. Therefore, a programming language
must have the ability to express the various functions
which those modules have.

There are two approaches for designing such a new
language. One is to design a large language such as
Adg‘which provides many facilities. Such a language
has an intermodule relation description facility in
addition to a module description facility. However ,
programming in this language is not easy since the
language specification becomes complicated.

The other approach is to prepare an intermodule
relation description language and a set of small
languages for the description of modules. That is, a
different category of module function should be
written in a different language which is sufficiently
simple and suitable for its function. This approach
was first proposed in 1979 and called MMP(5) (
Mutilingual Modular Programming). However, it was
uncertain how to describe an interface between
modules written in different languages.

Recently, this approach has become more important as
research in knowledge engineering is being activated.
This is because many programming paradigms such as
logic programming, functional programming, rule-
based programming and object-oriented programming
are considered useful for knowledge engineering but
any(o;'\e of them alone is not sufficient for general
use(l).

Some languages mixing several paradigms have been
already proposed. For example, Loops(2) and Tao(18)
are Lisp-based composite languages. ESP(4) and
Mandala(12) are Prolog-based composite languages.
The design policies of these languages are similar to
the aforementioned large language approach. That is,
it is intended that all kinds of programs can be written

X Ada is a registered trademark of the Department of
Defence, USA.

in one language including many functions. However, it
is considered difficult to unify different languages
based on different paradigms into one language
without conflicts or semantic ambiguity.

For avoiding these difficulties, this paper proposes
multilingual modular programming. In particular, an
object-oriented programming language is adopted as
an intermodule relation description language. On the
other hand, each module is described in one of the
conventional languages such as Prolog, Lisp, a rule-
based language, or a procedural language. This system
is called MMP-83 and the old version of this approach
is called MMP-79 in this paper.

The design policies of MMP-83 are as follows :

(1) A knowledge information processing system
requires facilities for knowledge representation and
inference in addition to conventional procedural
description. However, since a variety of knowledge
representation and inference can not be written in any
one of the conventional languages, a composite
language including them is necessary.

(2) The composite language should be composed of an
intermodule relation description language and a group
of module description languages in order to avoid the
aforementioned difficulties in unifying different
languages.

(3) An object-oriented programming language is
adopted as an intermodule relation description
language for the following reasons :

a) A programming unit called an object can be
regarded as a capsule including a category of
knowledge and its operations. This implies that
categorization of knowledge and modularization
of functions are performed simultaneously in only
one manner.

(b) An object hierarchy and its inheritance rules are
useful for the expression of the static relation
among objects and then for knowledge base
construction.

(c) Message passing between objects gives a simple
expression of the dynamic relation among objects.

(d) These features of (a), (b) and (c) are not lost even
if each object is written in the conventional
languages.

Consequently, MMP-83 provides the following new
paradigm :

(1) A global computation model and a global
knowledge structure are written naturally in an

904 T. Chusho and H. Haga

object-oriented language as the interobject relation
description.

(2) Computation rules and knowledge of facts are
written exactly in any suitable conventional language
as the object description.

This paper describes the MMP-83 approach in Chapter
2, an object-oriented programming model in Chapter
3, a method to embed Prolog in the model and the
newly developed language, Super-LONLI(S-LONLI)(14),
in Chapter 4, and discussions for completion of MMP-
83 in Chapter 5.

2. INTERMODULE RELATION DESCRIPTION
LANGUAGE

2.1 Previous works

The most important technique for large-scale software
system development is modularization. Since it is best
that an intermodule relation is as simple and easy-to-
understand as possible, the relation should be
expressed explicitly in a source program. There are
two approaches in previous works.

One is to include an intermodule relation description
facility in a module description language such as Ada.
The structured programming language, SPL(7), which
the authors developed for supporting top-down
development by stepwise refinement and data
abstraction in 1976, took this approach also. However,
this approach makes a programming language
specification complex and limits an intermodule
relation description to a module interface.

The other approach is to provide a proper language for
intermodule relation description such as MIL(11)
(Module Interconnection Language). However, since
these languages are indepedent of a programming
language for a module description, their utilization is
limited to documentation and consistency check of
module interfaces described in separation from a
source program.

Therefore, the authors proposed the third approach
called MMP-79 in 1979 as follows:

(1) A proper intermodule description language is
provided as a programming language.

(2) Each module is described in any conventional
language matched with the module function.

For practical use, however, this approach had to
overcome such difficulties in different programming
languges as different data types, different parameter
mechanisms, different control mechanisms and
different execution environments.

2.2 A object-oriented multilingual system

Recently, considerable effort has begun to be spent on
research in knowledge engineering which intends to
increase the ability of computer systems by embedding
human knowledge. This knowlege engineering is
expected to break through such a problem in software
engmeermg as a productivity gap between expert and
novice programmers also.

First of all, a language for describing knowledge
1nf0rmatlon processing systems has been required.

Then many candidates were proposed. Some of them
are rule-based languages, frame-based languages, logic
programming languages, functional programming
languages, and object-oriented programming
languages. However, none of them is sufficient to

Object-oriented Faths
for a natural description of

a grobal computation model

Programming

T
Know'l';dg/e Static relation
" module / of knowledge

/ Object wnth Hlerarchy and message passing|

/*////

ST R AR T,
4 % Vi
Dynamic relation

///\\/ /f;w}y/

e
IO\ JI 54

) ol / ///
Data abstract10n|
A /{gm
with [Procedures |

5;\\5\\5\\\5\@

[Logic] with [Control]

Conventional
for an exact description of

local computation rules and facts

programming
language

Figure 1. Design concept of MMP-83

describe a large-scale knowledge information
processing system.

One solution is MMP-83. The main idea of MMP-83 in
comparison with MMP-79 is that an object-oriented
programming language, referred to as OP, is adopted
for intermodule relation description as shown in fig.
1. The design policies of MMP-83 has already been
described in Chapter 1. In addition, OP overcomes
difficulties in linkage among different languages, with
which MMP-79 was faced, as follows :

(1) Message passing is adopted as a common control
mechanism among objects. Various control
mechanisms can be introduced by providing various
reply methods of message passing. For example, one
of them is whether a reply to a message sender returns
via the channel in which the message was sent or
whether the reply returns by sending another message
from the receiver. The second is whether an address
for the reply is limited to the message sender or
whether the reply can be accepted by any other
objects or by objects specified by the sender. The
third is whether the message sender waits for the
reply soon after sending the message or at an arbitrary
point.

(2) A call-by-value method is adopted as a basic
parameter mechanism corresponding with message
passing. A call-by-value-and/or-result method is
necessary also if the message is accompanied by the
reply.

(3) A demon for data type conversion is provided for
linkage between different data types. This demon is
invoked in the message receiver when it receives the
message with parameter values and when it returns
the result. The demon is user-definable and is
attached to an object.

3. OBJECT-ORIENTED PROGRAMMING LANGUAGE

An OP model is constructed as follows :

(1) The functional specification of an object is
expressed in a set of methods. A method is invoked by

A Multilingual Modular Programming System

receiving a message. It may have input and/or output
parameters.

(2) An object may include data declared as variable.
(3) From the viewpoint of data abstraction, only
methods in objects including data can access the data.
(#) Many instances are dynamically created from the
prototype to efficently produce many objects which
include the same methods but different data values.
The prototype is called a class object.

(5) Data belonging to a class or an instance is called
a class variable or an instance variable, respectively.
(6) A method of accessing a class variable or an
instance variable is called a class method or an
instance method, respectively.

(7) Class objects are composed in hierachy to
efficiently produce many objects which have sets of
methods slightly different from each other. A
descendant class inherits the methods of the ascendant
classes.

A conceptual scheme of this model and examples of
messages sent from instance 12 are shown in fig.2. An
actual description of sending a message is included in
a method in class C2. The use of the OP model is
assumed for the remainder of this paper.

4. EMBEDDING LP in OP

4.1 A module description in LP

OP is adopted for an intermodule relation description
in MMP-83 since OP is suitable for a natural
description of a global computation model of the real
world. However, it is still a problem to describe
manipulation procedures for data. In Smalltalk-80(13),
data manipulation procedures are described in the
same manner as global description, that is, in the
object-oriented style. This pure approach may not be
suitable for a description of inference. On the other
hand, in such a language as Ada which supports data
abstraction, data manipulation is described in the

905

conventional procedural manner. Programming in this
style is inefficient because of the semantic gap
between programs and the real world.

Consequently, a logic programming language(17),
referred to as LP, is considered the first module
description language in MMP-83 shown in fig.l,
because LP reduces the above-mentioned
disadvantages. Furthermore, LP provides inference
ability.

However, it is not easy to mix several languages based
on different paradigms or programming methodologies.
The following is a brief survey of languages supporting
OP and LP. First, there are ESP, Intermission(16),
PARLOG(10) and Mandala based on Prolog. In these
languages, OP is embedded in LP(LP-with-OP type).
Next, TAQO is based on Lisp and equally supports LP
and OP (LP-and-OP type). These methods of
inserting OP into such conventional languages as
Prolog or Lisp, may obscure the OP framework. It is
considered difficult to mix several languages based on
different paradigms in designing a unique language.

The approach described here is to insert LP in OP (
OP-with-LP type) and to clarify the boundary
between the languages instead of unifying them. This
paper discusses this OP-with-LP approach while
assuming that LP is Prolog(3).

4.2 Problems with mixture of OP and LP

The above-mentioned OP features cause the following
problems for LP.

First, an object has variables which may be "own
variables". This implies that the state of the object
varies with time. Because LP does not allow such "own '
variables", it is uncertain how to deal with the side
effect on the variables.

Second, functions of each object are not self-

class CO0 class Cn
CVO0,se- N instance I0 CVn,e*-
CMO0,+-- CMn, -+
L Nl e IVn,e: (notations)
IMOQ,--- I Mn,+ -
7 CVk : a class variable
A oy 7
co(cHM0) 10(IM0) Cn(CVn) CMk : a class method
instance In IVk : an instance variable
instance T1
IMk : an instance method
I1(IM1
L) III(IHO) In(I¥n) Ck =l : creation of instance I from class Ck
A / |
c1 (CHI)\ AMctinge T2 self (IN2) Ci =»Cy, : Class Cy is an ascendant class
// @ self (IM1) of class Gy
1 c?
e self (I0) A(m).: message to object A for execution of
CV 2,0 CZ/(MO)
CM2,+++ | c2(N1) [instance 172° 12’ (1M2) methed m
IVZ,-- [TC2(N2) 12’ (1M1) (This figure demonstrates message passing
IM2,-- ?
7T 127 (ING) from instance 12)

o1

Figure 2. An example of a model of an object-oriented Programming language .

906 T. Chusho and H. Haga

contained because of inheritance rules in the object
hierarchy. It is uncertain how to understand these
inheritance rules in the closed world assumption(9)
that the knowledge base knows everything there is to
know.

Third, instance objects are dynamically created from a
class object. There are no such facilities in LP.

Last, OP assumes that objects are concurrently
executed in principle(l5). It is uncertain how to deal
with message passing in sequential LP.

On the other hand, LP also causes some problems for
OP. The main features of LP such as Prolog are
unification and backtracking. Unification can be
regarded as a manner for matching a received message
to a target method in the receiver object. However,
backtracking is not acceptable for OP. This is the first
problem for OP. The second is the same as the
aforementioned problem, that is, sequentiality vs.
concurrency.

4.3 OP predicates

S-LONLI is a new language for describing knowledge
information processing systems. This language is
designed based on the OP model. Methods are
described in LP. The following built-in predicates are
provided for OP:

(1) gen(a): A class receiving this message creates
an instance of itself and names it 'a'.

instance I 2
IVO,---
IMO,'.'
Ivl’---
IM].,"'
IVZ,"'
IMZ'-..

copied from CO { «——12(IM0)

copied from Cl J «——T12(IM1)

copied from C2 { «——T2(IM2)

(1) An example of application of the copy rule

class C0
I MO
l 1 c0(IM0)
class Cl1
I M1,
A
C1(IM1) C1(IM0)
class C2
I MZ; “ae
instance I2
C2(INO)—— IV0,=-- <«———T2(IM0)
2(IM1)——| I V1,=-- <«——T2(IM1)
C2(IM2)— IV2,e-- <——T2(IM2)

(2) An example of application of the pass rule

Figure 3. Semantics of inheritance rules in object
hierarchy

(2) change(x ,v): The value v is assigned to the

variable x.

(3) send(a ,m): The message m is sent to the object
a.

In the remainder of this paper, explanations of any

other OP predicates are omitted because they do not

relate to the aforementioned problems with the

mixture of OP and LP.

4.4 Semantics of inheritance rules in hierarchy of
classes

The semantics of inheritance rules in a hierarchy of
classes should be defined from the viewpoint of the
closed world assumption. In general, the following two
definitions are considered:

(1) Copy rule

Instance variables and instance methods in a class and
its ascendant classes are copied in the instance
created from the class. An example of 12 shown in
fig.2 is demonstrated in fig.3(1). Class variables and
class methods in the ascendant classes of a class are
copied in the class itself.

(2) Pass rule

If no definition of the method corresponding to a
message can be found in the class receiving the
message or in the class of the instance receiving the
message, the class passes the message to the
ascendant class. The process of the message received
by the instance 12 shown in fig.2 is demonstrated in
fig.3(2). A message for the IMO method is passed from
12 to CO via C2 and Cl. However, instance variables
are copied into an instance by this rule just as in the
copy rule.

These two rules have the same semantics in the OP
model. However, the copy rule is preferable for this
new language because it corresponds with the closed
world assumption. The following grammatical rules
are introduced in accordance with the copy rule:

(1) When a method invokes other methods which are
copied into the former method in accordance with the
copy rule, the former can do so directly in the same
syntactic form as in invoking an ordinary predicate.
(2) In the other case, a method must invoke other
methods by sending messages to the objects including
the latter methods.

For example, when the IM2 method of C2 invokes the
IMO method in fig.2, it can be expressed as

im2:= .+ ,Im0, *
instead of
im2 i« « « 5 send(self, imQ), »*++ .

However, when invoking IMn, it can not be expressed

as ;
im2 ==+« MmN, ===

instead of

im2 :- -+ , send(in, imn), * + +

4.5 Side effect and backtracking

Execution of built-in predicates for OP may cause side
effects, which should be undone when backtracking is
triggered. That is, backtracking must kill an instance
created by 'gen', replace the value of a variable
assigned by 'change' with the previous value, and undo
the results of message execution caused by 'send'.
Furthermore, message passing to a created instance
and access to a changed value of a variable should also
be undone. This is called "distributed backtracking"
because this OP model assumes concurrency of object
execution. Since such complicated behavior must
manage a large amount of execution records

Ut lan ad i)y ——

-

A Multilingual Modular Programming System 907

increasing with time, backtracking must be restricted
to some extent for the practical use of a programming
language.

4.6 Success and failure of OP predicates

OP predicates will fail in the following cases when

used with LP;:

(1) The predicate has grammatical errors.

(2) A variable specified by 'change' is not found or
does not correspond with the data type of the
value.

(3) An instance specified by 'gen' has already been
created.

(4) An object or a method specified by 'send' is not
found.

(5) A method specified by 'send' is executed but then
fails.

The following alternatives for these cases are
considered:

(A) They are regarded as failures.

(B) They are regarded as successes.
Rule A requires sequential execution for practical use.
The sequentiality causes no problems on items (1) - (&)
since these items can be instantly checked. In the case
of item (5), however, since a sender of a message must
wait until the message is executed, OP concurrency is
obstructed. On the other hand, rule B is not as
advantageous in its manner of describing methods in
LP since confusing side effects occur.

Consequently, the following policy is taken:

(@) Rule A is applied to items (1) - (4) since it does
not conflict with OP.

(b) Rule B is applied to item (5) since concurrency of
OP seems to be very important.

However, it may sometimes be necessary for a
message sender to wait for the result of success or
failure. Therefore, in addition to 'send', the new
predicate, 'sendw' (send and wait), is provided as
follows:

(1) send : After execution of this predicate, a
program continues execution without waiting for
the result.

(2) sendw : After that, the program halts until results
return.

For example:

appoint(Date):-

sendw(secretary,schedule(Date, Item)),

(Item == vacant, answer(ok) ;answer(no)).
This program waits for the result after sending
'secretary' a message of inquiring about the schedule
for the date specified by 'Date'. Then this program
replies 'ok' if 'Item' is vacant and otherwise replies
'no'.

4.7 Restriction on backtracking

Strictly speaking, when backtracking follows side
effects accompanying successful execution of ‘gen’',
‘change', and/or 'send', these side effects should be
undone. For example, this problem is caused by failure
of 'r' in the following clause:

p(X) :- send(cl, gen(X)), change(last, X),

send(monitor, register(X)), r.

However, such backtracking cannot help neglecting
side effects since undoing side effects confuses the OP
world model because of the occurrence of distributed
backtracking and makes implementation difficult.

In compensation for users assuming full responsibility
for side effects, it is desirable for users to be able to

control such side effects. The primary side effect of
‘gen’ can be canceled by ‘kill' extinguishing an instance
object. That of 'change' can be canceled by 'change’
itself assigning the previous value. But that of 'send'
cannot be undone by any predicate.

Consequently, the following predicate, 'sendq' (send

via queue), is provided for lazy evaluation of 'send':

sendq : when this predicate occurs during execution of
a method, the predicate is stored in a queue
without being executed. If backtracking occurs,
the related 'sendq’ is omitted from the queue.
When the method has been successfully executed,
all predicates in the queue are executed. That is,
all messages by 'sendq’ are sent to their receivers.

The message to 'monitor’ in the aforementioned

example should be modified as follows:
sendg(monitor, register(X))

This predicate enables LP to be embedded into OP

without conflict between message passing and

backtracking while clarifying the boundary between

OP and LP.

Generally speaking, this facility implies that the
following control primitives are introduced in Prolog:
queue : When atomic formula x is written in the form
of queue(x), x is stored in a queue at its
occurence and is omitted from the queue by
backtracking. When the next-mentioned 'dequeue’
occurs and/or when the goal is attained, x in the
queue is executed in the first-in-first-out order.
dequeue :All atomic formulas in a queue are executed.

The aforementioned example is described by using
these control primitives as follows:
p(X) :- send(c1, gen(X)), change(last, X),

queue(send(monitor, registor(X))), r,dequeue.
Furthermore, side effects of input or output
predicates in Prolog become controllable by applying
these primitives to them as follows:

queue(write(+ -«))

4.8 Program examples in S-LONLI

An example program of S-LONLI is shown in fig.4.
This defines the class "washing_machine". The
washing_machine has two timers, one for washing time
control and the other for drying time control. Users
of this machine can select washing time from long or
short. This program includes two class definitions.
Class "washing_machine" has class
"electric_equipment" as its superclass. This represents
an "is_a" relation between these two classes. The
instance of class "timer" is declared as an instance
variable of class "washing_machine" by the
"instance_of" attribute for the variable. This
represents a "part_of" relation between
"washing_machine" and "timer".

5. DISCUSSIONS AND CONCLUSIONS

5.1 Multilingual System

S-LONLI was designed to embed LP in OP as the first
language based on MMP-83 philosophy. As described
in Chapter &, it is important to retain features of both
languages and to clarify the boundary between both
for avoiding semantic ambiguity when a composite
language is designed by mixing different languages.

A rule-based programming language is selected as the
second language for module description in MMP-83
since it is indispensable to compact knowledge

908 T. Chusho and H. Haga

define_frame washing_machine;
attribute class;
supers electric_equipment;
i_vars vater, state(mitial(O)),
timeri (instance_o: Stmer
timer2(instance_of (timer

’
.
?

i_method set_ vashin tme,
set_vashing_tize (1
send (timerl,set_ timgls,OOB,
send(timer2,set_time H
set_vashing_tine(sho
send{timrl,set timezlo OOB,
send (timer2,set_time(1,30));

end;
.i,method vashing
vashmg{long) 'flll vater(high; yvashing_start;
vashing(small) :-fill_water(low),vashing_start;
vashing_start :-
motor, on,sendv (timerl,start),
motor_off,drain,
motor_on, sendv (tmerZ,start) R
motor_off;

end;

i lethod fill _water;
“£ill vaterihlgh) s-change (vater_state, 20) ;
£ill vater(low) :-change(vater_state,10);

end;
Lmethod drain ;
drain :- change(wvater_state,0);
end;
end.

define_frame timer;
attribute glass;
supers roo
i_vars second Emmlﬁo;;
ninute(initial (0
i_method set_time;
set_time(N,S) '-change(nmute,ﬂ),change(second S);

end;
i method gtart;
gtart :- nnute—O,second-O'
start :- second=0,Nev_minute is minute-1,
change minute.Nev minute),
change second,59),start,
start $- New_second is second-1,
change (second,Nev_ second) ,start;
end;
end.

Fig.4. An example program in S-LONLI

processing. Embedding this language in OP is easier
than embedding LP in OP since an object hierarchy
and inheritance rule are considered as a
modularization mechanism. Any other language will
also be embedded in S-LONLI in accordance with the
same approach.

5.2 Implementation

The current version of S-LONLI was implemented in
the logic programming language, LONLI, and is
executed on HITAC M Series computers. S-LONLI
programs are transformed to LONLI programs by a
preprocessor and are executed with a message
interpreter on the LONLI processor.

This process is general in MMP-83. Each object is
transformed to a program written in the module
description language in which the methods of the
object are written. This transformed program is
processed by each language processor and is executed

under the control of the message interpreter.

5.3 Programming environment

Usability of a language system is dependent on its
programming environment. In the first step, the same
language-adaptive programming environment(8) as the
authors developed for conventional procedural
languages, is also developed. That is, a structure
editor, a debugger coupled to the editor and a source-
to-source transformer(6) for optimization. In the next

step, an expert system for S-LONLI programming will
be necessary for knowledge engineers, which system
supports knowledge acquisition, error diagnosis, etc.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Dr. Jun
Kawasaki and Yoshihiko Aoyama for their valuable
suggetions and advice. They are indebted to Yoshiko
Oto, who implemented S-LONLI with the authors, for
her invaluable discussions. They also wish to thank
Prof. Robert Kowalski and Dr. Steve Gregory for
helpful comments.

REFERENCES

(1) D. G. Bobrow, If Prolog is the answer, what is the
question?, Proc. Int. Conf. FGCS'84, Nov.
1984,138-145.

(2) D. G. Bobrow and M. Stefik, The LOOPS manual,
Xerox Co., Jan. 1983.

(3) D. Bowen, DEC system-10 Prolog user's manual :
Dept. of Artificial Intelligence, Univ. of
Edinburgh, Dec. 1981.

(4) T.Chikayama, ESP reference manual : Technical
Report TR-044, ICOT, Feb. 1984.

(5) T. Chusho, Conceptual design of multilingual
modular programming and its processer, the 21st
Annual Conf. of IPSJ, 2c-6, May 1980, 287-288
(Japanese).

(6) T. Chusho, A good program = a structured
programming + optimization commands, Proc.
IF1P'80,269-274.

(7) T,Chusho et al., A language with modified block
structure for data abstraction and stepwise
refinement, Proc. RIMS Simposium on the third
Mathematical Methods in Software Science and
Engineering, June, 1981, 156-173.

(8) T. Chusho. et al., A language-adaptive
programming environment based on a program
analyzer and a structure editor, Proc. IFIP'83,
Sep. 1983, 621-626.

(9) K. Clark, Negation as failure, Logic and
Databases (Ed. H. Gallaire, and J. Minker),
Plenum Press, 1978, 293-322.

(10) K. Clark and S. Gregory, PARLOG : parallel
programming in logic, Research Report DOC
84/4, Imperial College, Apr. 1984.

(11) F. DeRemer and H. Kron : Programming-in-the-
large vesus programming-in-the-small : IEEE
Trans. SE, vol.SE-2, no.4, June 1976, 80-86.

(12) K. Furukawa, et al., Mandala - A concurrent
prolog based knowledge programming
Language/System : IPSJ SIG on KE and Al 32, 32-
1, Nov. 1983.

(13) A. Goldberg, and D. Robson, Smalltalk-80 the
language and its implementation, Addison-Wesley,
1983.

(14) H. Haga and T. Chusho, S-LONLI - the language
for description of knowledge information
processing systems : Proc. the First Annual Conf{.
of Japan Society for Software and Technology,
2D-2, Dec. 1984, 167-170 (Japanese).

(15) C. Hewitt and H. Baker, Law for communicating
parallel processes : Proc. IFIP'77, 1977, 987-992,

(16) K. Kahn, Intermission-actors in Prolog : Logic
programming (Ed. K. Clark S. and Tarnlund),
Academic Press, 1982, 213-228.

(17) R. Kowalski, Logic Programming : Proc.
IFIP'83, Sep. 1983, 133-145.

(18) I. Takeuchi, et. al., TAO - a harmonic mean of
Lisp, Prolog and Smalltalk, ACM SIGPLAN
Notices, vol.18, no.7, July 1983, 65-74.

REPRINTED FROM:

INFORMATION PROCESSING 86

Proceedings of the IFIP 10th World Computer Congress
Dublin, Ireland
September 1-5, 1986

Edited by

H.-J. KUGLER

Department of Computer Science
Trinity College

Dublin, Ireland

PROGRAMME COMMITTEE

D. Bjgrner (Chairman)

D. C. Tzichritzis (Past Chairman), H.-J. Kugler (Editor),

J. G.Byrne (Organising Committee Liaison), V. Kotoy, U. Montanari, B. Domalki,
H. Huinke, R. Mori, H. Gallaire, A. Furtado, A. Danthine, J. Vlietstra,
A.l.Wasserman, R. Narasimhan

PARTICIPANTS EDITION

NS

1986

NORTH-HOLLAND
AMSTERDAM e NEW YORK @ OXFORD e TOKYO

