Reprinted from —
AFIPS — Conference Proceedings

Volume 52

© AFIPS PRESS
Arlington, VA 22209

HITS: A symbolic testing and debugging system for
multilingual microcomputer software

by TAKESHI CHUSHO,
ATSUSHI TANAKA, and
ERI OKAMOTO

Hitachi, Ltd.

Kawasaki, Japan

and

AKINORI HONDA

and TORU KUROSAKI
Hitachi, Ltd.

Yokohama, Japan

ABSTRACT

The use of a large-scale computer is the key to the development of increasingly
numerous and large-scale microcomputer software programs. HITS (Highly Inter-
active Testing-and-debugging System) constructs an integrated programming envi-
ronment for 68000 microcomputer systems on a large-scale computer in cooperation
with language translators. This system supports efficient and effective software
validation from module testing through system testing. Functions of HITS are
provided in the test-procedure description language, in which test data, expected
results and the testing environment are described and separated from the target
program. The main features are (1) symbolic support of both a high-level language
and an assembly language, (2) module testing facilities such as driver and stub
definitions, (3) a testing coverage monitor for branch testing, (4) debugging com-
mands added temporarily to a test procedure from a terminal, and (5) a macro
definition for language extension. HITS has already been used at many sites. In our
early experience of applying it to the software development of various commu-
nication systems, software productivity and reliability were considerably improved.

73

HITS: A Symbolic Testing and Debugging System 75

INTRODUCTION

Software development for microcomputer systems is entering
a critical stage. This is because the programming environment
is still poor, even though microcomputers have been applied
extensively to various fields, many of which have required
high reliability. Furthermore, large-scale software has begun
to be developed as 16-bit microcomputers have come into
wider use. For example, we have developed 100~ 200 kilo
steps of software for a digital switching system using 68000
microcomputers.

To date, almost all programming environments for micro-
computer-software development have been constructed on
the target microcomputer or on a development support sys-
tem in which a microcomputer is embedded. Such resident
support systems, however, provide limited facilities. That is,
the programming language is usually assembly language. Fur-
thermore, a debugger supports only dump, patch, breakpoint,
and trace on a machine-language level. There are no oper-
ating systems with various useful utilities and powerful file
management for software development as there are in a large-
scale computer.

There are two effective solutions to these problems:

1. Programming in a high-level language and testing and
debugging on a source-program level.

2. Using a large-scale computer for developing software,
from programming through validation.

These solutions have been partially adopted in previous stud-
ies. For example, a high-level language, PL/M, for Intel’s
microcomputer families, was early developed. However, the
software development system is not sufficient for software
validation, because it mainly supports debugging, not testing
such as the symbolic description of a test procedure.' Another
example is the microcomputer software engineering facility,
MSEF, which uses a minicomputer.? Although this system is
aimed at supporting a wide range of microcomputer-software
development, the testing facility is limited to management of
the relationship between a target program, its input data, and
results under the hierarchical file system.

We have incorporated both of these solutions in an attempt
to deal with the problem of developing large-scale software
for digital switching systems. First, a system description lan-
guage for microcomputers, S-PL/H, has been developed and
its cross compiler has been available in the Hitachi M-series
computer system since the end of 1980." S-PL/H is a superset
language of PL/M and it provides both the basic facilities of
PL/I and microcomputer-oriented facilities.

Next, a testing and debugging system for microcomputer

68000 software, HITS, has been developed for efficient and
effective software validation using the large-scale computer.*
This has been available since the spring of 1982. HITS con-
structs an integrated programming environment for micro-
computer software development in cooperation with S-PL/H.

The main requirements for HITS are a wide range of sup-
ports for various aspects as follows:

1. Support ranging from small-scale software through
large-scale software,

2. Target programs in both a high-level language and as-
sembly language,

3. Testing facilities ranging from module testing through
system testing,

4. Compatibility of testing facilities and debugging facili-
ties,

5. Executions in interactive mode and batch mode.

This paper describes the design concepts and functions of
HITS and some application resuits.

DESIGN CONCEPTS

Many different techniques and tools for software validation
have been developed, such as data-flow analysis for automatic
error detection, symbolic execution for automatic test-data
selection, and assertions for correctness proof.” Many of
them, however, are not practical for large-scale software vali-
dation because they require enormous computing resources.

Therefore, we still must depend on “exhaustive testing” in
which a lot of data are evaluated against the corresponding
expected results. Our goal is to improve the efficiency and
effectiveness of such dynamic testing. HITS was thus devel-
oped on the basis of the following design concepts:

1. Environment: use of a large-scale computer

2. Coverage: support of module testing, integration testing,
and system testing

3. Function: support and unification of systematic testing
facilities and interactive debugging facilities

4. Object: program modules written in a high-level lan-
guage and assembly language

5. Ease of use: minimization of preparations and oper-
ations, such as symbolic commands and a test-procedure
library.

First, the use of a large-scale computer provides the follow-
ing advantages:

® integrated file management for source programs, object
programs, test data, test results, and path-coverage data,

76 National Computer Conference, 1983

® parallel processing of both module testing and integra-
tion testing under a time-sharing system.

Figure 1 shows the system configuration of HITS. The second
item, systematic testing from module testing through system
testing in this configuration, will be described in the next
chapter.

The third item is based on the idea that testing and de-
bugging cannot be separated. Of the conventional tools for
software validation in practical use, there are many that pro-
vide only debugging facilities. The others provide only testing
facilities. For example, although MTS® and TPL are excellent
tools for module testing, they do not support debugging. Fur-
thermore, the former requires much preparation time because
of target-language independence. The latter is limited to tests
having only Fortran subroutine parameters. In HITS, when an
error is detected by the execution of a test procedure that
includes test data and the expected results, the test procedure
can be executed again interactively while adding temporary
commands for debugging.

The fourth item, support of both a high-level language and
assembly language, is necessary for the development of sys-
tem software because assembly language is used for the de-
scription of modules requiring device control or critical re-
sponse time. For example, in the aforementioned digital
switching system, 70% of all modules are described in a high-
level language, S-PL/H, and 30% in assembly language.
Therefore, these two languages are supported so that HITS
may be available not only for module testing but also for
integration testing and system testing. The fifth item, ease of

_use, is indispensable to support tools. A test procedure de-
scription language for HITS was designed taking this policy
into consideration.

SYSTEMATIC TESTING

Software testing is performed in the following steps:

Programming Database

Source Object Test Test Coverage
Programs | Programs [Procedures Results Data
Ny
\\ ,’
\\ //
z v X
Cross
Compiler Commands
HITS and
Cross Displays
Assembler
Terminals

ES: 83

Operating System
(TSS/Batch)

Large-Scale Computer

Figure 1—System configuration of HITS

—

. module testing for validation of each module function,

2. integration testing for validation of interfaces between
related modules,

3. system testing for validation of system function.

To be applied as widely as possible, a test system should
systematically and uniformly support all of these steps and not
depend on any one particular testing strategy such as bottom-
up testing or top-down testing.®

HITS provides the following features for systematic testing:

1. All testing steps are supported by providing testing-
environment simulation facilities for module and inte-
gration testing and a module-binding facility for integra-
tion and system testing.

2. Test data can be shared among all testing steps by using
a test procedure that includes the test data.

3. Testing-coverage data for effective test-data selection
and quality assurance are collected throughout all test-
ing steps.

We will now look at these features in a little more detail.

Modulellntegration Testing

Module and integration testing should be performed as
thoroughly as possible, considering the following two axioms
of productivity and reliability:

1. The later an error is detected, the more it costs to correct
it.?

2. Itis difficult to get a high testing-coverage rate at a later
step.'’

These testing steps, however, require a testing-environment
construction that is complicated and troublesome. That is, an
upper module, lower modules, global data, and input/output
devices for the target module must be simulated. HITS re-

duces this work with testing-environment support facilities as /M

shown in Figure 2.

Test Procedure

A test procedure includes test data, expected results, and
testing-environment simulation, and is described in the test
procedure description language that will be discussed later.
This procedure is separated from a target module and can be
shared throughout all testing steps by eliminating the simu-
lation part, which integration of modules makes unnecessary.

Branch testing

Test-data selection methods are classified into functional
testing, based on function specification, and structural testing
based on program structure.' Branch testing is typical of the
latter methods and is supported by HITS.'? That is, the num-

HITS: A Symbolic Testing and Debugging System 71

Driver Definition (CALL)

=== -

| Upper !

1 Module |

_____ 4

e - ﬂ e —— -
1 1/0 {<——— Target —>= Global !
| Devices I—™>] Module |[<——1 Data _}
| R E T S——— T R e R
Data lI/O Storage
(SET, LIST) u Allocation

—————— - (GET)

: Lower :

| Modules |

Lo 4

Stub Definition (STUB)

<= : Control flow
<— : Data flow
() : Command

Figure 2—Environment support facilities for module testing

ber of executed branch directions is measured and the un-
executed parts are reported.

FUNCTIONS OF HITS

Test-Procedure Description Language

A test-procedure description language is designed as a com-
mand language rather than a procedural language because

1. HITS supports both testing and debugging in a uniform
manner, and a command language is very suitable for
interactive debugging.

2. Furthermore, a command language is easy to use even
for test-procedure description and this satisfies the de-
sign policy of minimization of preparations and oper-
ations.

The structure of a test procedure is as follows:

PROC test-procedure name
{commands in common use among the following
test cases}
CASE the first test-case name
{commands only for the first test case}
END
CASE the second test-case name
{commands only for the second test case}
END

END PROC

Commands in common use include commands such as
those for binding of target modules and storage allo-
cation of external global data. The test procedure is
stored in a library and is executed by an EXEC com-
mand or is entered directly from a terminal. We would
next like to look at command functions.

Simulation of Testing Environment

1. Driver definition: Upper module simulation is composed
of value assignments to input parameters using SET com-
mands, target-module invocation using a CALL or GO com-
mand, and result verification using IF commands. CALL may
include value assignments to input parameters.

2. Stub definition: Lower module simulation is described in
a STUB command whose subcommands may be composed of
IF commands for input-parameter checks and SET commands
for value assignment to output parameters.

3. External global data: Their storage is allocated using
GET commands and may be assigned values by SET com-
mands.

4. Input and output: Their instruction location is specified
as a breakpoint by an AT command whose subcommands are
SET commands for value assignments to input variables or
LIST commands for display of output values.

Reduction of Test Procedure Description

1. Macro-definition: A list of commands used repeatedly is
defined as a new extended command by a macro-definition
facility. For example, a new command for a result check is
defined as follows:

CLIST %CHECK

IF &1 =&2 LIST '<0O.K.>', ‘&1 = &2’

IF &1 < >&2LIST '<N.G.>','&1< > &2’
END CLIST

&n implies the nth parameter. Assuming that this macro is
used as %2CHECK (STATE, 3), if the value of the variable
STATE is 3,

<0O.K.> STATE=3
is displayed. if not,
<N.G.> STATE < >3

is displayed.

2. Simplification of object identification: A QUALIFY
command permits references to a local name without qual-
ification that specifies the scope of the name. An EQUATE
command replaces a complicated address expression with a
new name. ’

3. Variation of constant values: A DATA command defines
a sequence of constant values so that a test case can be exe-
cuted repeatedly while varying only constant values.

78 National Computer Conference, 1983

4. Communication among test procedures: LOAD and
SAVE commands permit a test procedure to use data values
that are created by another test procedure.

Debugging Facilities

1. Breakpoint: The breakpoint is specified by'an AT com-
mand which may include subcommands executed at the
breakpoint. A breakpoint is expressed by the procedure
names or statement numbers for the target program in
S-PL/H. The specification of the procedure name causes an
interruption and requests commands at the beginning of the
procedure. The specification of the procedure name following
END also functions at the end of the procedure. The state-
ment numbers should be used only for interactive debugging,
not for test-procedure description, so that modification of a
target program does not cause modification of the test pro-
cedure. For the target program in assembly language, a break-
point is expressed by the label names and hexadecimal offset
address.

2. Trace: TRACE commands are used for the forward and
backward control trace of branches or procedure calls, or for
trace of data-value modifications. A BREAK option causes
an interruption and requests commands at every trace event.

3. Debug mode: The BREAK option also functions at the
beginning of the target-program execution if it is so specified
before execution of a test procedure. Therefore, at that time,
temporary commands for debugging can be entered without
rewriting the test procedure in a library.

4. Off-line output: A large amount of trace data or dump
can be output to a line printer instead of a display terminal by
using an OUT option.

5. Exception handling: Exception handling can be de-
scribed in a STUB command with an INTERRUPT option
that includes an interruption condition such as an operation-
code trap and an address error. References to undefined data
are always detected.

DESIGN OF COMMAND LANGUAGE

The command syntax of HITS has the following features in
comparison with conventional command languages:

1. procedural concept of block structure,
2. target language dependency,
3. abbreviation of command name.

First, it is desirable that constraints between commands be
few. However, when HITS commands are used for descrip-
tion of a test procedure, some commands require subcom-
mands. Therefore, the following seven block structures are
introduced:

i. test-procedure block (PROC ~ END)
ii. test-case block (CASE ~ END)

iii. macro-definition block (CLIST ~ END)
iv. linkage block (LINK ~ END)

v. stub block (STUB ~ END)
vi. condition block (IF ~ END)
vii. breakpoint block (AT ~ END).

The last four blocks are used only if they have two or more
subcommands. When there is only one subcommand, it is
specified at their operands for simplicity. The second feature
implies that a user can describe a test procedure on the
target source-program level. For example, abstract operands
of HITS commands, < instruction-address> and < data-
address > , depend on a target language as shown in Table I.
Therefore, it is easy to learn and use the command language.
The third feature is provided to improve the efficiency of
interactive debugging (full names of commands should be.
used in test procedures for readability). Our abbreviation rule
is simple, that is, the latter part of a name can be truncated
from an arbitrary position after the first character. If the
truncated names of some commands are the same, the system
decides which is which in advance, based on the frequency of
use.

EXAMPLE

An example is given for explanation of a testing process using
HITS. Assume that we develop a program for selecting the
maximum of two values that are the minimum values of two
groups of values. Two procedures, MINIMAX and MIN, are
written in S-PL/H as shown in Figure 3.

A test procedure for integration testing of these procedures
is shown in Figure 4, assuming that the lower procedure MAX
and a caller of MINIMAX are not written yet. First, two
modules, SUB1 and SUB2, including MINIMAX and MIN,
respectively, are extracted from a library by an INCLUDE
command that is a subcommand of a LINK command. Next,
storage for the external global data, X and Y, is allocated.
Then, a stub for MAX is defined and several test cases follow.

One of the test cases, C07, is composed of value assign-
ments to global variables, X and Y, invocation for MINI-
MAX, and result check. The definition of %CHECK has
been previously mentioned. Here, two other interesting
macro-definitions can be used, namely %PRE and %POST.
They are assertions for verification of the precondition and
postcondition of a procedure, and are defined as follows:

CLIST %PRE
AT &1 DO
IF &2 RESUME
LIST '&1 PRECONDITION: &2 is false.’
END
END CLIST

CLIST %POST
AT END &1 DO
IF &2 RESUME
LIST '&1 POSTCONDITION: &2 is false.’
END
END CLIST

HITS: A Symbolic Testing and Debugging System 79

TABLE [—Command operands differing between S-PL/H and
assembly language

Details for

Abstract Operand Details for S-PL/H an Assembly Language

procedure name
or label with offset
statement number

< instruction-
address >

label with offset,
indirect addressing,
and register indexing

< data-address > variable name

For example, these commands may be inserted before a
CALL command in the test case C07 as follows:

%PRE (MIN, A(1) > —1)
%POST (MIN, I<11)

The first command verifies that the input parameter A to
procedure MIN has at least one valid value. The second veri-
fies that the array variable A was never erroneously referred
to out of range in procedure MIN.

When the test case C07 is executed, the following error
message is output at %CHECK (RESULT, 2):

<N.G.> RESULT < >2

An example of interactive debugging for this error is shown in
Figure 5. The test case C07 is executed with the debug mode

SUBL: do;
dc1 (X,Y) (10) integer external;

MINIMAX: proc (var M) public;

dc1 (M,MX,MY) integer;
call MIN(X,MX);
call MIN(Y,MY);

(
Y)
,MX

MY
M=MAX (MX,MY) ;

end MINIMAX;
end SUB1;

SUB2: do;
MIN: proc (A,var B) public ;
dc1 A(10) integer;
dc1 (B,I) integer;
B=A(1);
1=2;
do whlile A(I) >= 0 ;
if A(I) > B then B=A(I);
I=1+1;
end;
end MIN;
end SUBZ;

Figure 3—A sample of a target program

PROC TPZ21
LINK INCLUDE SUB1,SUB2
GET X,Y
STUB MAX(P,Q) DO
SET MAX=P
IF P < Q SET MAX=Q
END

CASE CO7
SET %=(1,335,75-1)
SET Y=(2,4,6,-1)
CALL MINIMAX(RESULT)
%CHECK (RESULT,2)
END CASE

END PROC

Figure 4—A sample of a test procedure

(BREAK option). At the beginning of MIN, the value of the
input parameter A is checked. Then, MIN is executed while
tracing for modifications of the output parameter B. Finally,
the cause of the error in an if statement is detected, and this
test procedure is terminated.

APPLICATION OF HITS

This system has been released to many factories and laborato-
ries since the spring of 1982. The following advantages of
HITS were confirmed.

1. Writability: The average number of commands in a test
procedure is 4.4 ~ 5.6 per test case for module testing of
a digital switching system, although the number of com-

{ ready }

OPTION BREAK

EXEC TP21(C07&

{ break at MINIMAX }

AT MIN LIST A

RESUME

{ display and break at MIN }

TRACE DATA(MIN#B)

AT END MIN

RESUME

{ display and break at the end of MIN }

STOP PROC
{ ready }

Figure 5—An example of interactive debugging

80 National Computer Conference, 1983

mands depends on such things as the number of input
and output parameters, the number of external data,
and similarity among test cases.

2. Operability: The target program is automatically tested
by entering an EXEC command. This is because various
operations required by a conventional debugger are au-
tomated or assembled into a test procedure.

3. Reliability: The quality of a target program becomes
visible with the use of a testing-coverage facility and is
improved by adding test cases for unexecuted branches.
Reliability of testing is also improved because a test
procedure is described on the target-program source lev-
el and clearly corresponds to a target program and its
testing specifications.

4. Productivity: Productivity is improved by the following

factors:
i. early error detection by promotion of module test-
ing,

ii. high efficiency of test-data generation, execution,
and result check
iii. quick debugging.
In our experience, when HITS was applied to only mod-
ule and integration testing, testing cost was reduced by
35% in comparison with the previous testing method
using the target computer. For a target program applica-
ble to system testing, testing cost was reduced by 45%.
5. Maintainability: It is easy to modify and add test cases
because a test procedure is separate from a target pro-
gram. The test procedure is shared among module, inte-
gration, and system testing with only minor changes, and
is also available in the maintenance phase of a target
program.

CONCLUSIONS

A testing and debugging support system, HITS, for micro-
computer 68000 software was developed for efficient and ef-
fective software validation using a large-scale computer. The
main features of HITS are as follows:

1. All steps of module testing, integration testing, and sys-
tem testing are supported while sharing test data and
accumulating testing-coverage data.

2. Module-testing support facilities for simulation of an
upper module, lower modules, external global data, and
input/output devices are provided.

3. Test data, expected results, and environment simulation
are assembled in a test procedure that is executed under
both batch and interactive modes.

4. Both a high level language, S-PL/H, and assembly lan-
guage are supported on the source-program level.

HITS has already been released to many sites and has im-
proved software productivity and reliability.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Takeo
Miura for providing the opportunity to conduct this study.
They are also indebted to Tan Watanabe, who designed
S-PL/H, for his invaluable technical assistance, Mitsuyuki
Masui for comments on drafts of the functional specification,
and Tatsuro Oishi for modification of the S-PL/H cross-
compiler and the cross-assembler that pass symbolic tables to
HITS.

REFERENCES

1. Guide to Intellec Microcomputer Development Systems. Santa Clara, Calif.:
Intel Corporation, 1978.

2. Eanes, R. S., C. K. Hitcon, R. M. Thall, and J. W, Brackett. *“An Environ-
ment for Producing Well-Engineered Microcomputer Software.”” Proceed-
ings of the 4th International Conference on Software Engineering, 1979,
pp. 386-398.

3. Hitachi Microcomputer System: 68000 Super-PL/H Language Manual.
Tokyo: Hitachi Ltd., 1981.

4, Chusho, T., T. Watanabe, T. Kurosaki, and T. Yamamoto. “Design Con-
cepts of a Microcomputer Software Testing and Debugging System.” The
Fall Conference of Information Processing Society of Japan (in Japanese),
1981, pp. 419-420.

5. Miller, E. F., and W. E. Howden. “Tutorial: Software Testing and Valida-
tion Techniques,” IEEE Catalog No. EHO 138-8. 1978.

6. Module Testing System (MTS) Fact Book. London: Management Systems
and Programming Ltd., 1972.

7. Panzl, D. J. “Automatic Software Testing Drivers.” Computer, 11 (1978),
pp. 44-50.

8. Myers, G. 1. The Arr of Software Testing. New York: Wiley-Interscience,
1979.

9. Sorkowitz, A. R, “‘Certification Testing: A Procedure to Improve the Qual-
ity of Software Testing.” Computer, 12 (1979), pp. 20-24.

10. Holthouse, M. A., and M. J. Hatch. “Experience with Automated Testing
Analysis.” Computer, 12 (1979), pp. 33-36.

11. Howden, W. E. “Applicability of Software Validation Techniques to Sci-
entific Programs.” ACM TOPLAS, 2 (1980), pp. 307-320.

12. Miller, E. F. “Program Testing: Art Meets Theory." Computer, 10 (1977),
pp. 42-51.

