/

INFORMATION PROCESSING 83, R.E.A. Mason (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1983

A LANGUAGE-ADAPTIVE PROGRAMMING ENVIRONMENT
BASED ON A PROGRAM ANALYZER AND A STRUCTURE EDITOR

Takeshi CHUSHO and Tan WATANABE
Systems Development Laboratory, Hitachi, Ltd.
1099, Ohzenji, Asao-ku, Kawasaki 215, Japan

Toshihiro HAY ASHI
Omika Works, Hitachi, Ltd.
Hitachi-shi, Ibaraki, Japan

The language-adaptive and methodology-oriented

programming enviromment is a single

integrated system based on a common program analyzer which is employed by all programming
tools such as a structure editor, a structured programming language processor and a

structural testing tool. In particular,

the structure editor, PARSE (the Production And

Reduction Screen Editor), supports top-down development by stepwise refinement, structured

coding and language construet edition. That is,
are performed using primitive functions,

program refinement and local modification

namely, replacement of refinable language

construects, reduction to a nonterminal and insertion of a nonterminal according to the
extended production rules, although global modification is performed by dedicated commands.

1. INTRODUCTION

Software productivity has become the critical
roblem because of recent rapid increases in
the amount of software. In the 1970's,
considerable effort had been spent on research
in software engineering. As a result, new
programming methodologies such as program
development by stepwise refinement[1,2], data
abstraction[3], and other modularization
techniques were proposed. Then several new
programming languages supporting these
methodologies were developed,

However, these new languages reduce the costs
by only a small fraction in comparison with
total software development costs[4].
Therefore, more attention has been recently
directed to an integrated programming
environment. Since a conventional programming
environment is the assembly of independent
programming tools, their effectiveness as a
system is often interfered by such obstacles as
interface inconsistency and language
specification discrepancy.

o Effective approaches for overcoming these

defects and for improving usability, are

considered as follows:

(1) methodology-oriented integration of tools
into one system,

(2) adaptation of tools to the objective
language.

We call such a system "a language-adaptive

programming environment" (LPE). For example, a

text editor and a debugger should be replaced

by a structure editor and a structural testing

tool, respectively. The latter tools are

provided with high-level functions by limiting

application to aparticular language,

In previous studies, several language-oriented
systems have been developed such as
Interlisp[5], Mentor[6], the Cornell program
synthesizer[7] and the incremental programming
environment[8]. All of them include both a
structure editor and a debugger. However, new
programming methodologies are not applicable
enough in these systems which support only
conventional languages or their dialects. The
Ada programming support environment(APSE)[9]

may support new methodologies for large-scale
software development because these
methodologies are incorporated in Ada.
Although another language-oriented system, the
Iota system[15], supports modular programming,
this system is suitable for education, not for
large-scale software.

In our previous studies, a structured
programming language, SPL[10], and its support
tools had been researched. SPL was designed for
supporting top-down development by stepwise
refinement, The compiler was developed in 1976
and the performance of separate compilation has
been further improved[11].

Next, the interactive support system, CROPS,
for SPL has been studied. Our early goal was to
let programmers make well-structured programs
in SPL because a program written in a
structured programming language is not always
well-structured. Therefore, two-stage
programming was proposed[12,13]. That is, first
a well-structured program is produced without
considering efficiency and then it is optimized
at the second stage. Restructuring commands for
the first stage are considered high-level
structure editor commands.

Based on these studies on SPL, it has been
concluded that the aforementioned LPE should be
developed at the next stage of software
productivity improvement, This is because all
of these programming tools for SPL are
language-oriented and requires program analyses
such as parsing and flow analysis. Thus, LPE
for SPL has been designed so that programming
support facilities may employ a common program
analyzer. Then the structure editor, called
PARSE, was developed.

Previous structure editors support syntax
check, manipulation of language constructs, or
prompting by syntactic templates. In addition,
PARSE supports structured programming such as
top-down development by stepwise refinement in
cooperation with SPL.

This paper describes the conceptual design of
LPE, functional design and implementation of
PARSE.

622 T. Chusho, T. Watanabe and T. Hayashi

2. CONCEPTUAL DESIGN OF LPE

2.1 Integration of tools

Various programming tools are used in the
program development process. However, the
effectiveness of the tools as a system is often
interfered by such obstacles as inconsistent
interfaces, different host machines and
discrepant language specifications. Therefore,
it is desirable that the programming
environment be a single consistent system from
the user's viewpoint. For this purpose, all
programming tools should be integrated on the
basis of the following four items:

(1) a consistent programming methodology,

(2) a common program analyzer,

(3) a common database,

(4) a uniform user interface.

The third and fourth items has been indicated
by Howden[14] and others. In addition, the
first and second items are also indispensable
for the following reasons:

(i) Consistent methodology:
The effectiveness of programming tools is often
dependent on input program structures, which
are guided by programming methodologies.
Therefiore, all programming tools should support
a consistent methodology. For example,
programmers applying modularization techniques,
must be confused if a compiler rejects a
program composed of many modules or if a
debugger does not support module testing. That
is, the following three tools are considered as
basic tools based on structured programming:
(1) a struecture editor,
(2) a structured programming language and its
compiler,
(3) a structural testing tool.

(ii) A commun program analyzer:
Most high-level programming tools whose input
is a source program, need program analysis
although such analysis is very costly. For
example, the aforementioned three basic tools
all require parsing and flow analysis.
Therefore, one common program analyzer is
positioned at the kernel of the system. Its
main functions are as follows:
(1) transformation from a source program to a
parse tree,

72,

Y 2,
-
éé;Pro mma’/’
25/

PMS: Program management system with parsing,
flow analysis and path analysis

Fig. 1. A hierarchy of the system's functions.

(2) transformation from this tree to a control
flow graph,

) data flow analysis,

) path analysis and path predicate
calculation.

The program analyzer is called the program

management system, PMS. Each programming tool

is constructed using PMS as shown in Fig. 1.

(3
(4

(iii) A common database:

It is common for output data of a programming
tool to become input data of another tool.
Therefore, the database is introduced and is
consistently managed.

(iv) A uniform user interface:

It is mandatory that user interface including a
command language, system messages and terminal
operations be uniform among all tools. This
enables the programming enviromment to be a
single consistent system from the user's
viewpoint.

(v) System configuration:

The system configuration of LPE is based on
these design policies and is shown in Fig. 2.
Users can perform programming through
validation by entering commands from a terminal,
Fig. 1 is considered to be the projection of
Fig. 2 from the terminal side. The first LPE
is being developed for SPL which is widely
employed.

2.2 Function classification

Functions of LPE are classified into the

following nine groups: O, P, Q, R, S, T, U, V,
and W modes. These modes are used usually in
this order in the program development process,

(i) Opening mode (0 mode):

At the beginning, the following opening

operations may be necessary:

(1) allocation of various files used in later
modes,

Design
Information

!

Input Proc.
7 7
Structure
Editor

/////55/5;5 Command

DBMS Compiler Proc.

s -
PMSé Structural —

Testing Command

// Tool and
Display

PDB

1
AR RN

o
Other Toolsé
S

Output Proc.
Load
Documents [::::::] Module

Fig. 2. System configuration of the language-
adaptive programming environment.

Y 3N VOV IY T

A Language-Adaptive Programming Environment 623

(2) inclusion of source programs from the
external file,

The second item is necessary for programs

which are produced without LPE.

(ii) Production mode (P mode):

This mode supports top-down development by
stepwise refinement on the basis of handling
incomplete and abstract programs, That is,
these programs include pseudo-statements and
linguistic nonterminals, and can be refined
according to extended production rules of a
programming language. This mode's functions
are described in detail in the next chapter.

(iii) Query mode (Q mode):

Various information about programs is

necessary at the time of code review whose
purpose is refinement, modification and
testing of programs. Therefore, this mode is
provided with a query facility. For example,
the following information is given using
static program analysis facilities of PMS:
intermodule relations such as a call graph,
module interfaces such as parameters and
external data access,

scope of identifiers and their
declaration-reference-relations,

(4) a control flow graph,

(5) data flow such as definition-use-relations,
(6) program complexity.

(iv) Reduction mode (R mode):

A program is modified for the following

reasons:

(1) error correction,

(2) functional modification,

(3) well-structuring,

(4) optimization.

Although the first two items need program

testing, the other two items do not if the

system verifies the correctness automatically.

Therefore, this mode is provided with commands

for the following two types of modifications:

(1) local modification such as insertion,
deletion and replacement of language
constructs, ’

(2) global modification such as renaming of
identifiers, module interface change,
inline-substitution of procedure invocation
and merging or splitting of loops and
procedures,

Local modification is performed by reduction

according to the extended production rules

which were applied in the production mode.

This will be described in detail later. Global

modification is performed by a specific

command with automatic verification as
described in other papers[12,13].

(v) Semantic analysis mode (S mode):

Complete semantic analysis of a program is
performed in this mode, although syntactie
analysis and local semantic analysis are
always performed automatically in the
production and reduction modes. This is
because it is very time-consuming that
semantic analysis of a whole program is
performed whenever a small part of the program
is refined or modified.

(vi) Testing mode (T mode):
This mode supports the following tasks for
program testing:

(1) test data selection,

(2) execution of target programs and result
check,

(3) debugging.

The static program analysis facilities of PMS

enable this mode to support high-level

structural testing and module testing.

(vii) Utility mode (U mode):

Assets of existent programming tools are
useful sometimes, especially, in transition to
the complete LPE., Therefore, this mode permits
the use of exsistent tools.

(viii) Validation mode (V mode):

Software validation is one of the most

difficult problems in software development.

In this system, programs are validated using

various methods based on the following items

which are monitored in the previous modes:

(1) Q mode: program complexity,

(2) R mode: frequency of program modification,

(3) S mode: existence of semantic errors,

(4) T mode: the number of detected errors and
testing coverage on a control flow graph,

(5) U mode: output of testing tools.

(iv) Writing mode (W mode):

This mode prints out documents required during
maintenance time such as source program lists,
control flow graphs and module interface lists,
3. STRUCTURE EDITOR FOR STRUCTURED PROGRAMMING

3.1 Design concept of a structure editor

Among the three basic tools of LPE, the
structure editor has been first developed in
advance of the compiler and the structural
testing tool. This is because, instead of the
latter tools, respective independent tools are
already available., Although, a conventional
text editor is available instead of the
structure editor, the text editor has a
semantic gap defect between thought and
operation, That is, a program is regarded as
statements containing semantics when it is read.
However, the program is regarded as a character
string without semantiecs when it is manipulated
by a text editor.

The structure editor raises program
manipulation level to thought level and
eliminates the semantic gap. Furthermore, this
editor supports programming methodology
together with the objective language SPL
according to the basic policy of methodology
consistency. Consequently, this editor is
provided with the following functions:

(1) top-down development by stepwise refinement,
(2) structured coding,

(3) language construct edition.

Among the nine modes of LPE, the structure
editor includes the first five modes, namely,
opening, production, query, reduction and
semantic analysis. Then its kernel program was
developed, which includes the production and
reduction modes and is called PARSE (the
Production And Reduction Screen Editor). It is
intended that the other functions are added
stepwise while accompanying enhancement of PMS.
In the remainder of this section, overview of
PARSE is described.

624 T. Chusho, T. Watanabe and T. Hayashi

(i) Top-down development by stepwise refinement:
In this method, a program at an intermediate
step is called the abstract program. PARSE
handles the abstract program including the
following refinable items:

(1) nonterminals,

(2) pseudo-statements,

(3) procedure references,

(4) user-defined type references.,

The last two items are supported in SPL and
used for stepwise refinement of procedures and
data. An example of an SPL program is shown in
Fig. 3. In the process module of the first
step, the type STACK and the procedure PUSH are
referred to, Then they are refined in the
environment module and process module of the
second step, respectively.

In addition, nonterminals are introduced so
that the body of each module may be refined
stepwise. Pseudo-statements are also necessary
for general use, which are independent in the
objective language. For example, instead of the
procedure reference, PUSH (VALUE) TO (S1), in
Fig. 3(a), the following pseudo-statement can
be written:

"Push down the value to the S1 stack."

PARSE supports stepwise refinement of a program

as follows:

(1) The current refinable item (CRE) on the
screen is marked by a particular method
such as high-lighting or coloring depending
on the terminal.

(2) How to refine CRE is displayed as a
selection menu,

(3) CRE is replaced by the right-hand side of
the corresponding production rule or input
text.

process P1(E1);
func EVAL opt(sub);
var S1:STACK(100);

PUSH(VALUE) TO(S1);

end P1;
(a) The process module of the first step

enviroment E2(E1);
declaration;
type STACK(LENGTH:int)
=(TOP:int init(0),
STK(LENGTH) : real,
MAX:int init(LENGTH));
end;
end E2;

(b) The enviromment module of the second step

process P2(E2);
fune PUSH(V) TO(S) opt(open);
par V:real,
S:STACK(*);
S, TOP=S, TOP+1;
S.STK(S.TOP)=V;
end PUSH;

end P2;
(¢c) The process module of the second step

Fig. 3. An example of an SPL program developed
by stepwise refinement.

(ii) Structured coding:

The basic control statements of SPL are limited
to those for compound, selection and iteration.
For guidance of such structured coding, these
control statements are introduced only by
replacing {statement> with the right-hand side
of the production rule which is called a
template. However, the other statements can be
introduced by either direct text input or
application of a production rule.

(iii) Edition of language constructs:

Basic modifications of language constructs, are

performed by two primitive functions, that is,

insertion of a nonterminal and reduction to a

nonterminal as follows:

(1) Insertion: after a nonterminal is inserted
at the cursor position, the nonterminal is
refined,

(2) Deletion: after reducing the cursor-
positioned part to the corresponding
nonterminal, the nonterminal is deleted by
inputting the null text, if possible,

(3) Replacement: after reducing the cursor-

positioned part to the nonterminal, the —

nonterminal is refined.
3.2 PARSE commands

How to enter the commands is classified into
two styles, namely, (1) a function key and (2)
a command name following a period, but they may
alter depending on the terminal. In this
section, a function key name is expressed by a
bold-faced word.

(i) System control:

There are such system control commands as

undo for cancel of the latest program
manipulation, .save for file output of an
editted program and .end for system termination.

(ii) Screen control:

The screen is splitted into the upper and lower

partitions, The program is displayed in the

upper partition. The lower partition is used

for man-machine communication such as error

messages, sSelection menus and user input. 1In

addition to screen control of conventional

editors, the following language-oriented

functions characterize PARSE:

(1) A display part in a program is specified
by display following a procedure name or
a module name.

(2) A procedure or a module can be specified
as a scroll unit.

(3) CRE is moved by CRE-up and CRE-down.

(iii) Program refinement:

First, when CRE is a nonterminal, the right-
hand side of the corresponding production rule
is displayed. CRE is replaced with the n-th
alternative by entering .n. Furthermore, the
nonterminal can be directly replaced with input
text since PARSE analyzes the syntax. If the
input text is null and the nonterminal is
optional, it is deleted. The text input
facility is efficient for expert programmers.
However, text input is not permitted for
nonterminals which construct basic program
structure, that is, the upper nonterminals in
comparison with <specificationy», <declaration>
and ¢statement> in a parse tree because of
excluding severe grammatical errors. Moreover,

A Language-Adaptive Programming Environment 625

text input of a control statement is not
permitted also for supporting structured
programming. Instead, template commands are
introduced such as .if for an if-statement and
.ru for a repeat-until-statement since these
statements are frequently used.

Next, when CRE is either a pseudo-statement, a
procedure reference or a user-defined type
reference, refine converts CRE into a comment
and inserts the respective nonterminals of
¢statementy or (user-def'ined type”>. Also, when
CRE is either a procedure reference or a user-
defined type reference, the body can be defined
instead of the inline-refinement. That is,
define displays the template of a procedure
definition or a type definition. Then a user
can refine this template. When '.!' is entered
as a command, this state is terminated and the
previous screen is redisplayed. For example,
let CRE be the reference to the procedure PUSH
in Fig. 3(a), and if refine is entered, the
reference is replaced by the following:

/% PUSH (VALUE) TO (S1) %/
Lstatement2,..

However, if define is entered, the following
template is displayed:

func PUSH (<par-name>) TO (<{par-name>)
[opt(<option>)];

[<declarationy]...

{statement>...

end PUSH;

In each example, the underlined part means a
new CRE.

(iv) Program modification:

Basic commands for modification are reduce and
insert whose usage was described previously.
The simplest reduction algorithm for reduce is
to replace the cursor-positioned part with the
left=-hand side of the corresponding production
rule., This means deleting the minimum subtree
corresponding to the cursor-positioned part in
the parse tree which is the internal
representation of a user program. This
algorithm, however, is not practical because,
mfor example, reduce must be repeatedly

entered for deletion of a statement.

Thus PARSE adopts the following algorithm. A
parse tree is denoted by T(N,A), where N is a
set of nodes and A is a set of arcs directed
from the root to the leaves, Each node has an
attribute which is TT for a terminal symbol
node, NT for a nonterminal symbol node with
text input permission or NN for a nonterminal
symbol node without it, Some notations are
introduced here with respect to node x, that
is, ATTR(x) for an attribute of x, SUC(x) for a
set of successor nodes of x and PRED(x) for the
predecessor node of x. For function f, f%(x)

is def'ined recursively:

*(x) = {p! pef(x)
vip e£(q) for Yq €£*(x))}.

The reduction algorithm is as follows:

(1) Let ¢ be the node corresponding to the
cursor position,

(2) If ATTR(PRED(c))=NN, delete the subtree
whose root is PRED(c) while leaving PRED(c),

(3) If not, node r is found on the following
condition:

34,r ePRED*(c) and
q=PRED(r) A ATTR(q) =NN A ATTR(r)=NT,

and then, delete the subtree whose root is

r while leaving r.
The second step means that the minimum subtree
including the cursor position is replaced by
the root node whose attribute is NN, The third
step means that the maximum subtree whose root
has an attribute of NT, is replaced by the root
among subtrees including the cursor position,

This algorithm has an opposite defect of the
simplest algorithm. That is, for example, a
statement must be reproduced from (statement>
even for spelling corrections., Therefore,
PARSE displays the deleted part in the text
input area so that a user can modify it by text
edition and re-enter it. This is considered to
be a hybrid method for a structure editor and a
text editor.

Next, imsert inserts all nonterminals which

can be grammatically inserted at the cursor

position., The insertion algorithm in a parse

tree is as follows, where L(x) and R(x) denote
the left-most and right-most successor nodes of
node x, respectively:

(1) Let c be the node at the cursor position or
directly after that if the position is
space, and let b be the node directly
before the cursor position,

(2) For Yp e{p! ceL¥*(p)}, insert optional
successor nodes of p to the left side of
L(p), if possible,

(3) For Ype{p! b&R*(p)}, insert optional
successor nodes of p to the right side of
R(p), if possible,

(4) For p satisfying the following condition:

Jq,r €sUC(p) and b &R*(q) pc eL™(r),

insert optional successor nodes of p
between q and r, if possible.

4, IMPLEMENTATION

4.1 Localization of language dependency

Language specification is written in the form

of BNF and is automatically transformed into

internal representation which is called the BNF

table. PARSE refers to this table for the

following language-dependent processing:

(1) a selection menu display for promsiiug to
refine CRE,

(2) parse tree manipulation by refine, define,
reduce and insert,

(3) parsing of input text,

(4) pretty printing by an unparser.

For these uses, the BNF table has several
features, For example, a production rule is
expressed nonrecursively with such metasymbols
as ... for iteration and [] for option. The
number of nonterminals is minimized for
reduction of the parse tree depth, that is, for
operability. Pretty printing rules are
automatically added to the BNF table, because
the input of the BNF table generator is written
in screen display form. However, template
commands, a comment format and a line format
are processed by action routines because they
are language-dependent but are not included in
the BNF table.

626 T. Chusho, T. Watanabe and T. Hayashi

4,2 Parsing algorithm

Input text is parsed while referring to the BNF
table. Input parameters of the parser are the
nonterminal number LNO and the text pointer PTR.
Output parameters are SUC for result and TREE
transformed from the text. In the following
algorithm, the procedure PP is introduced for
partial parsing, RNO implies one of alternative
production rules for LNO, and CNO is the
component number in the right-hand side:

procedure PARSER(LNO,PTR, SUC, TREE);
{initialize TREE}
PP(LNO, PTR, SUC);
if {PTR is not empty} then SUC:=false;
end;
procedure PP(LNO, PTR, SUC);
case {attribute of LNO} of
TT: {individual parsing}
NN: {error handling}
NT: {save TREE and PTR}; RNO:=1;
while {RNO is valid} do
CNO:=1;
while {CNO is valid} do
if {CNO is terminal}
then if {CNO matches to text}
then {add to TREE}
{advance PTR}
goto LP2;
else PP({LNO of CNO},PTR,SUC)
if SUC then goto LP2;
if {CNO is not option} then goto LP1;
LP2: CNO:=CNO+1;
endwhile;
SUC:=true; return;
LP1:{recover TREE and PTR}; RNO:=RNO+1;
endwhile;
SUC:=false;
endcase;
end;

Furthermore, additional procedures are
required, such as for iterative components
marked with ..., suitable error messages and
exception handling.

4.3 Extensibility and transportability

For easy functional extention, support of
different terminals and transportation to
different host machines, corresponding
processing is localized. Moreover, the system
is written in Pascal. The first version of
PARSE is executed on the TSS system of the
Hitachi M series computer.

5. CONCLUSIONS

The language-adaptive and methodology-oriented
programming enviromment was designed on the
basis of our previous studies on a structured
programming language and its support tools. In
this system, all programming facilities employ
a common program analyzer and consistently
support new programming methodologies.

Among the basic tools, the structure editor,
PARSE, was newly developed. The first version
supports top-down development by stepwise
refinement, structured coding and language
construct edition., In particular, program
refinement and local modification are performed
by primitive functions, namely, replacement of

refinable language constructs, reduction to a
nonterminal and insertion of a nonterminal
according to the extended production rules,
although global modification is performed by
dedicated commands. In the implementation of
PARSE, language dependency was localized in the
BNF table for extensibility and
transportability.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to
Dr. Takeo Miura and Dr. Jun Kawasaki for his
valuable suggestions and advice., They are also
indebted to Atushi Tanaka, Yuki Takahashi and
Kiyomi Mori for implementing PARSE.

REFERENCES

[1] E.W.Dijkstra, Notes on structured
programming, Strustured programming,
Academic Press, London and New York,
1972,1-82.

[2] N.Wirth, Program development by stepwise
refinement, CACM, vol.14, no.4, April
1971, 221-227.

[3] B.Liskov et al., Abstraction mechanism in
CLU, CACM, vol.20, no.8, August 1977,

56 4-576.

[4] T.A.Standish, The importance of ADA
programming support environments,
Proc., NCC'82, 1982, 333-339.

[5] W.Teitleman et al., The Interlisp
programming enviromment, Computer,
vol.14, no., 4, 25-32,

[6] V.Donzeau-Gouge et al., A structure
oriented program editor: a first step
towards computer assisted programming,
IRIA Research Report, no.114, 1975.

[7] T.Teitelbaum et al., The Cornell program
synthesizer: a syntax-directed programming
enviromment, CACM, vol.24, no.9,
September 1981, 563-573.

[8] R.Medina-Mora et al., An incremental
programming enviromment, IEEE
Transactions on Software Engineering,
vol.SE-7, no.5, September 1981, 472-482,

[9] Requirements for Ada programming support
enviromments "STONEMAN"™, US Dept. of
Defense, February 1980.

[10] T,Chusho et al., A language with modified
block structure for data abstraction and
stepwise refinement, Proc. RIMS Simposium
on 3rd Mathematical Methods in Software
Science and Engineering, 1981, 156-173.

[11] T.Chusho et al., Performance analyses of
paging algorithms for compilation of a
highly modularized program, IEEE
Transaction on Software Engineering, vol.
SE-T, no.2, March 1981, 248-254,

[12] T.Chusho et al., Two-stage programming:
interactive optimization after structured
programming, Proc. the third USA-Japan
Computer Conference, 1978, 171-175.

[13] T.Chusho, A good program = a structured
program + optimization commands, Proc.
IFIP'80, 1980, 269-274.

[14] W.E.Howden, Contemporary software
development enviromments, CACM; vol.25,
no.5, May 1982, 318-329.

[15] R.Nakajima et al., The Iota programming
system - a support system for hierarchiecal
and modular programming, Proc. IFIP'80,
1980, 299-304.

REPRINTED FROM:

INFORMATION PROCESSING 83

Proceedings of the IFIP 9th World Computer Congress

Paris, France,
September 19-23, 1983

Edited by

R. E. A. MASON

Institute of Computer Science
University of Guelph

Guelph, Ontario, Canada

PROGRAM COMMITTEE

D. C. Tsichritzis (Chairman)

F.H.Sumner (Past Chairman, Vice-Chairman), R. E. A. Mason (Editor),

J. Arsac (Organizing Committee Liaison), H. Schorr, D. Bjerner, V. E. Kotov, W. M. Newman,
J. W. Schmidt, G. Capriz, N. Naffah, R. Mori, C. J. van Rijsbergen, T. Ohlin

u

1983

NORTH-HOLLAND
AMSTERDAM e NEW YORK e OXFORD

