INFORMATION PROCESSING 80, S.H. Lavington (ed.)
North-Holland Publishing Company
®© IFIP, 1980

A GOOD PROGRAM = A STRUCTURED PROGRAM + OPTIMIZATION COMMANDS

Takeshi CHUSHO
Systems Development Laboratory, Hitachi, Ltd.
Ohzenji, Tama-ku, Kawasaki, Japan

An interactive optimization system is a tool for applying structured programming to a field
with severe object efficiency requirements. A system is described in which optimization of
a structured Pascal program is performed with a combination of primitive commands for
flexibility and avoidance of a large catalogue of transformation rules. The system
automatically verifies all optimization commands so as to eliminate retesting, and makes it
possible to use a structured program instead of the optimized program at maintenance time.
The correctness of each command is proved by using other optimization or verification
commands on the basis of the hierarchy of command construction. An experiment is described
which confirms the effectiveness of our system.

1. INTRODUCTION

For the past few years, considerable effort has
been spent on improving software productivity,
reliability, and maintainability. However, the
greatest attention has been focused on "struc-
tured programming". The meaning of structured
programming has not been clearly defined but
the essence of this approach is to produce a
program with high readability. There are well-
known techniques for structured programming
such as structured coding[1] and top-down
development by stepwise refinement[2,3].
Modularization techniques[4,5] and abstraction
techniques[6] have also been investigated.

On the other hand, adequate attention has not
been focused on the main disadvantage of
structured programming, i.e., the degradation
of object efficiency. This is because software
productivity has been considered more important
than object efficiency in large computer
systems. In minicomputer and microcomputer
systems, however, this is not necessarily true
because the main memory capacity is limited and
efficient memory use is very important. There-
fore, when structured programming is applied to
these systems, software must be developed with
the following two conflicting criteria:

(1) to produce well-structured programs,and

(2) to produce efficient programs.

The simplest solution to the above-mentioned
problem is to separate optimizing from struc-
turing. This methodology is called two-stage
programming in this paper. It expands
Dijkstra's principle[2] of "one decision at a
time" into "one decision at a time with one
eriterion”, and makes programming easier.

At the second stage, there are three ways to
optimize a structured program: manual, interac-
tive, and automatic. The following problems
result from manipulation by a programmer.

(1) The optimized program must be tested
again for assurance of correctness of
optimization.

(2) Maintenance of the optimized program is
difficult because of low readability so
that the merits of structured programming
are lost.

On the other hand, automatic manipulation by a
translator or preprocessor limits the scope of
optimization to rather simple cases because the
cost of higher level optimization is extremely
high compared with its effect,

An interactive system, however, can exclude
these defects of the other two approaches if
the system optimizes a program according to
commands entered by a programmer, proves cor-
rectness of these commands, and preserves an
original well-structured program,

In previous studies, Knuth[7] proposed the
concept of an interactive program-manipulation
system. Standish et al.[8,9] refined this con-
cept with examples introducing general enabling
conditions such as commutativity, freedom from
side-effects, and invarience. Loveman[10] in-
tended to improve a program by source-to-source
transformation. Although his main purpose is
high level optimization in the compilation
process, the interactive approach is also men-
tioned., These approaches, however, need large
transformation catalogues in which users must
find a suitable transformation, and may cause
degradation of reliability at the point where a
programmer is expected to verify program
equivalence. Arsac[11] makes such a catalogue
of more primitive transformations such as
syntactic and local semantic transformations.

.

The author and his colleague have also studied
an interactive optimization system[12] in con-
nection with the development of the structured
programming language SPL[13]. Our conclusions
on the interactive optimization system -are:

(1) Proof of correctness of all optimization
commands is necessary in order to keep the
merits of a structured program during its
lifetime.

(2) The function of each command should be
primitive and each optimization shovld be
performed with a combination of severa
primitive commands, so that the system may
be flexible enough to perform various
kinds of optimization and avoid a large
catalogue of transformation rules.

OQur original system was designed as a conversa-
tional restructuring, optimizing, and parti-

270 T. Chusho/A good program = a structured program + optimization commands

tioning system(CROPS)[12] for SPL. This system,
however, seemed to be too large for implementa-
tion. Therefore, at the experimental implemen-
tation stage, Pascal was selected instead of
SPL. The remainder of this paper describes the
interactive optimization system for structured
Pascal programs, named CROPS/Pascal,

2. INTERACTIVE PROGRAMMING SYSTEM

Two-stage programming is composed of the
following steps:

(1) Initial programming

(2) Restructuring

(3) Testing and debugging

(4) Performance evaluation

(5) Profile analysis

(6) Optimizing
The first three steps are in the structuring
stage. The last three steps are in the optimiz-
ing stage and are repeated until the require-
ments of object efficiency are satisfied.

The testing and debugging step is not necessary
after optimization because of automatie proof
of correctness of optimization commands, Since
the well-structured program(SP) validated at
(3) and a sequence of optimization commands(C)
applied at (6) are preserved, the current
version of an optimized program(OP) is in the
relation OP=C(SP) and can be produced at any
time by applying C to SP. This feature is very
useful especially for maintenance,

3. CORRECTNESS PROOF OF OPTIMIZATION COMMANDS

3.1 Construction of commands

Commands of CROPS/Pascal are divided into the
following four classes:
(1) Control commands for system management
(2) OPT commands for optimization or
optimization preprocessing
(3) TEST commands for testing and debugging
or for verification of the OPT commands
(4) EDIT commands for line/character
manipulation or for restructuring
At the optimization step, only control and OPT
commands are available for users.

3.2 Classification of OPT commands

In an interactive optimization system, extensi-
bility of a command set is necessary because
addition of new commands may be required,
Therefore, OPT commands are processed hierar-
chically by using other OPT, TEST and EDIT
commands in CROPS/Pascal. The proof of correct-
ness of these commands, in particular, is
performed by using other OPT and TEST commands,
OPT commands are classified on the basis of
proof methods as follows:

Type I : using only TEST commands

Type II : using other OPT and TEST commands
Type III: using only other OPT commands
Type IV : using individual techniques

Type V : proof unnecessary

3.3 Verification of OPT commands

(i) Preparation

First, TEST commands and operators which are
used in this section are introduced. The TEST
commands are:

(1) MOD : getting a set of variables whose
values are modified in the specified
range of lexically successive
statements

(2) USE : getting a set of variables whose
values are used in the specified
range

(3) LIVE : getting a set of statements in or

after whose execution the specified
variable may be referred to without
modification

(4) LOCAL : verifying independence of two

specified parts

(5) COMPARE: verifing semantic equivalence of

two specified parts
Operators are:

(1) Sep : getting a set of continuous ranges
from a set of statements

(2) Head: getting the upper boundary of the
specified continuous range

(3) Tail: getting the lower boundary of the
specified continuous range

(4) Pred: getting the predecessor of the
specified statement

(5) Sucec: getting the successor of the
specified statement

In the remainder of this section, A/B means A
or B and (n1,n2) means a range from nl to n2,
The statement number n is composed of a line
number k and a statement number m in the line,
namely, k#m, In the case m=1, however, #1 is
omitted.

(ii) Type I

(1) RENAME Vold, Vpey, D1-n2
This command is used for preprocessing of opti-
mization and replaces the name of the variable
Vold in (n1,n2) by a new name vpey.
This is verified in the following three cases:
(a) If vpey has not been declared, it will
be correct due to the following process:
(a1) vpew:=vp1q is generated at every entry
point to (n1,n2) if the following
condition is true:
{n1C LIVE(VOld)}
A {n1§Head(r), VreSep-LIVE(vold)].
(a2) vo1d:=Vpey 15 generated at every exit
point from (n1,n2) if the following
condition is true:
{HEC LIVE(Vold)
An2%Tail(r), VreSep-LIVE(vg1g)}.
(b) If vpey has already been declared in the
block ineluding (n1,n2),
(b1) the condition of rejection is
{data types of two variables are different}
V{(n1,n2) N\LIVE(vpey) 5§ },
(b2) and otherwise, the same as (a).
(e) If vpey has already been declared outside
the block including (n1,n2),
(e1) the condition of rejection is
Vnew € (MOD(this block) U USE(this block)) :
(c2) and otherwise, the same as (a).
In the cases of (a) and (e¢), the variable
declaration of vpe, is generated in the block
ineluding (n1,n2).

(2) MOVE n1-n2, n3

This command is also used for preprocessing of

optimization and puts (n1,n2) after n3. This is

correct if the following LOCAL command is true:
(a) LOCAL n1-n2, Succ(n3)-Pred(n1) (if n1>n3)
(b) LOCAL n1-n2, Suecc(n2)-n3 (if n2<n3)

T. Chusho/A good program = a structured program + optimization commands 271

(3) DELETE LOOP(n)
This command deletes a for loop while leaving
the loop body. The loop body is enclosed with
an if statement if it may not be executed. The
condition of acceptance is

{the loop variable § USE(body)}

A{i/o statements &body}

A {(rcbody)V (r nbody=&), Vr- & Sep-LIVE(V),

Yv e (MOD(body) N USE(body))} .

(4) MERGE LOOP(n1,n2)

This command merges two for loops which begin

at n1 and n2 respectively and whose loop

controls are the same, It is verified by using
LOCAL body1, body2, condition.

The condition is i>j(to) or i<j(downto) when i

and j are loop variables.

(5) ROTATE LOOP(n1), n2-n3, FORTH
This command interchanges the first (n2,n3) of
the loop body with the last half, while copying
the first half which may be enclosed with an if
statement in front of the loop. The system must
verify whether the extra execution of the first
half is invalid. That is, the condition of
acceptance is

{{rn(n2,n3)=&) V(Tail(r)C body),

Vr € Sep-LIVE(V), Yve MOD(n2,n3)}.

(iii) Type II

(1) MOVE IF(n1), n2-n3, nid-n5, FORTH/BACK
When (n2,n3) in a then phrase of an if
statement is the same as (nl4,n5) in the else
phrase, this command moves these common parts
before/after the if statement and unifies them.
This is verified as follows:

(a) If the common part is not at the top/
bottom in the then or else phrase, it is
moved there by using the MOVE command
mentioned in(ii).

(b) Next, COMPARE is used to verify whether
(n2,n3) is same as (nk,n5).

(2) REPLACE n1-n2, p
This command replaces (n1,n2) by the procedure
statement of p, and this operation is verified
as follows:
(a) (n1,n2) is temporarily replaced by p.
(b) This p is inline-substituted by EXPAND.
(e¢) (n1,n2) in the original program is com-
pared with the expanded part by COMPARE.

(iv) Type III

(1) SPLIT LOOP(n1), n2
A for loop beginning at n1 is split into two
for loops from n2, and this is verified as
follows:
(a) The loop is temporarily split.
(b) It is correct if MERGE is applied to
these split loops and accepted.

(2) ROTATE LOOP(n1), n2-n3, BACK

The function of this command is inverse to the
ROTATE command with the option FORTH. It is
correct if the latter command is accepted after
the former command is temporarily applied.

(3) MOVE LOOP(n1), n2-n3

(n2,n3) in a for loop beginning at n1 is moved
in front of this loop for extraction of the
loop invariant. This is not primitive and
composed of the following three commands:

(a) MOVE n2-n3,n1 (if (n2,n3) is not at the
top of the loop body.)

(b) SPLIT LOOP(n1), Suce(n3)

(c) DELETE LOOP(n1)

(v) Type IV

(1) DELETE n

At some stages of applying a sequence of OPT
commands, invalid statements, such as an
assignment statement in which the left-hand
side is not referenced later, are sometimes
generated, This command excludes them.

(vi) Type V

(1) EXPAND LOOP(n), FIRST/LAST

The first/last repetition of a for loop
beginning at n is divided from the loop.

If the first/last repetition may not be
executed, the expanded part is enclosed by an
if statement with executable condition.

(2) EXPAND p(n)

A procedure statement or a function designator
of p at n is inline-substituted while replacing
formal parameters by actual parameters in '
accordance with the following rules:

(a) A variable parameter directly replaces
references to the corresponding formal
parameter.

(b) A value parameter, in principle, is
assigned to a temporary variable, and
then, this variable replaces references to
the corresponding formal parameter.

In most cases, however, the temporary
variable is not necessary and the system
may automatically optimize.

(e) In the case of a function, a new variable
name is introduced instead of p.

(3) EXECUTE C/S nl-n2, v
References to the variable v in (n1,n2) are
replaced by its symbolic value. When the option
C is specified, the replaced values are limited
to constants.

(4) REDUCE n
Strength reduction of expressions is performed
on the n-th statement.

L, SAMPLE PROGRAMMING

An experiment was conducted with sample
programming for the purpose of confirming the

effect of two-stage programming.

4.1 Structured programming

A program for calculation of the following
expressions was selected as a sample. This
program was necessary for research of a paging
%lgorithm.

Q‘]j= 1 ,3=1,

0 ,2{j<{jmax,

jmax
Qij k;lLI{Qi—‘.I,k , 24, j=1,

5L jna L
% 1Lk)Qi-1’j+ E::Lj)Qi_g,j_1,2£1,2£3(3max,
= =J

jmax
Ni = El LJ' Qij .

“~ j=

(357
~
(3]

Lj is the reference probability to the j-th
layer of an LRU stack. Qj4 is the existence
probability in j-th layer of the stack at the
i-th time. Nj is the reference probability to a
paticular page at the i-th time. For practical
use of this program, it was necessary for i to
be greater than 10000 and for jmax to be 1024.

The initial program was developed with emphasis
on high readability. That is, the above-
mentioned expressions were transformed to a
program with clarity of correspondence as shown
in Fig. 1. This program, however, could not be
executed because memory capacity is insuffi-
cient for the array variable Q. Therefore, IMAX
was temporarily reduced from 10000 to 40. At
that time, cpu time for execution of this
program was about 20 minutes on a middle class
computer HITAC M-160II. Consequently,
optimization became necessary.

4.2 Optimization
(i) Space reduction

In order to make the program executable, the
dimension of Q must be reduced from two to one,
That is, instead of referring to Q after value
assignments of all elements, each element of Q
should be referenced directly after its value
assignment, Therefore, first, the for loop
referring to Q was unified into the other for
loop defining Q, using the four commands shown

.

800 procedure GETN;
900 var Q:array[1..IMAX,1..JMAX] of real;

1000 I,J:integer;

1100 function SUMLQ(I:integer):peal;
1200 var SUM:real;

1300 K:integer;

1400 begin

1500 SUM:=0.0;

1600 for K:=1 to JMAX do

1700 SUM:=SUM+L[KI*Q[I,K];

1800 SUMLQ : =SUM;

1900 end;

2000 function SUML(TOP,BOTTOM:integer):real;
2100 yar SUM:real;

2200 K:integer;

2300 begin

2400 SUM:=0.0;

2500 for K:=TOP to BOTTOM do
2600 SUM: =SUM+L[K];

2700 SUML : =SUM;

2800 end;

2900 begin

3000 Ql1,1]1:=1.0;

3100 for J:=2 to JMAX do

3200 Ql1,d]:=0.0;

3300 for I:=2 to IMAX do

3400 begin

3500 Q[I,1]:=SUMLQ(I-1);
3600 for J:=2 to JMAX do
3700 Q[I,Jd]:=8UML(1,J-1)#*Q[I-1,J]
3800 +SUML(J, JMAX) *Q[I-1,Jd-11];
3900 end;

4000 for T:=1 to IMAX do

4100 N[I]:=SUMLQ(I);

4200 end;

H

Fig. 1. A well-structured program.

T. Chusho/A good program = a structured program + optimization commands

in Fig. 2(a) as follows:

(1) EXPAND makes the repetition numbers of
two loops same.

(2) MOVE moves the expanded part in front of
the first loop in order to make two loops
ad jacent.

(3) MERGE unifies two loops.

Next, the function SUMLQ referring to Q was
inline-substituted for simplification of
control flow, using five commands in Fig. 2(b)
as follows:

(1) EXPAND replaces every function designator
by its body. A new variable SUMLQ1 is
introduced instead of SUMLQ.

(2) EXECUTE replaces references to the
variable SUMLQ1 by references to the
variable SUM.

(3) The next three DELETEs exclude the
assignment statements of SUMLQ1:=SUM
because SUMLQ1 is never referenced.

Finally, the dimension of Q was reduced using
twelve commands in Fig. 2(c¢) as follows:

(1) New array variables QI and PREQI with one
dimension are introduced and replace Q
using RENAME twice. These commands
generate the following four assignment
statements mentioned in 3.3(ii):

3402 QI[*]:=Q[I,%*];
3404 PREQI[*]:=Q[I-1,*];
3852 Q[I-1,*]:=PREQI[%*];
3860 Q[I,*]1:=QI[*];
,using '¥' which represents all elements

EXPAND LOOP(4000), FIRST
MOVE 3950, 3200
MERGE LOOP(3300, 4000)

(a) Mergence of two loops.,

EXPAND SUMLQ
EXECUTE S SUMLQ1
DELETE 3240
DELETE 3440
DELETE 3840

(b) Inline-substitution of a function.

RENAME Q[I,*], QI[*], 3410-3850
RENAME Q[I-1,%], PREQI[*], 3410-3850
DELETE 3402

ROTATE LOOP(3300), 3404, FORTH
EXECUTE S 3860-3870, Q[I,*]

DELETE 3860

DELETE 3852

RENAME Q[1,®], PREQI[*], 3000-3230
DELETE 2910

EXECUTE S 3252-3260, Q[1,%]

DELETE 3260

DELETE 3252

(e) Reduction of dimension of an array variable,

EXPAND SUML

RENAME SUML1, SUML1J[J], 3600-3800
RENAME SUML2, SUML2J[J], 3600-3800
SPLIT LOOP(3600), 3700

MOVE LOOP(3300), 3600-3685

(d) Extraction of a loop invariant.

Fig. 2. A sequence of optimization commands.

T. Chusho/A good program = a structured program + optimization commands 273

of possible values corresponding to '#!
for convenience sake.

(2) The statement at 3402 is deleted because
QI is not referenced.

(3) The statement at 3404 is moved to the
bottom of the loop by ROTATE, dividing the
case I=2. Consequently, the following two
statements are generated:

3260 PREQI[*]:=Q[1,*];
3870 PREQI[*]:=Q[I,#*];

(4) EXECUTE replaces the right-hand side at
3870 by the right-hand side at 3860.

(5) Consequently, the statements at 3852 and
3860 can be deleted because Q is not
referenced.

Thus, all Q[I,*]s and Q[I-1,#¥]s in the loop are
excluded. Q[1,%*]s are also excluded in the same
way, using the other commands in Fig.2(c).

As a result of this optimization, the storage
capacity for Q was reduced to be small and
constant, whereas previously it was
proportional to the maximum value of i.

H

800 procedure GETN;
300 var QI,PREQI:array[1..JMAX] of real;

1000 I,J:integer;

1200 SUM:real;

1300 K:integer;

2000 SUM1:real;

2010 SUML1d,
SUML2J:array[1..JMAX] of real;

2100 K1:integer;

2900 begin

3000 PREQI[1]:=1.0;

3100 for J:=2 to JMAX do

3200 PREQI[J]:=0.0;

3210 SUM:=0.0;

3220 for K:=1 to JMAX do

3230 SUM: =SUM+L[K]*PREQI[K];

3250 N[1]:=SUM;

3254 for J:=2 to JMAX do

3258 begin

3262 SUM1:=0.0;

3266 for K1:=1 to J-1 do

3270 SUM1:=SUM1+L[K1];

3274 SUML1J[J]:=5SUM1;

3278 SUM1:=0.0;

3282 for Ki1:=J to JMAX do

3286 SUM1:=SUM1+L[K1];

3290 SUML2J[J]:=SUM1;

3294 nd;

3300 for I:=2 to IMAX do

3400 begin

3410 SUM:=0.0;

3420 for K:=1 to JMAX do

3430 SUM:=SUM+L[K]*PREQI[K];

3500 QI[1]:=SUM;

3690 for J:=2 to JMAX do

3700 QI[J]:=SUML1J[J]*PREQI[J]

3800 +SUML2J[J1#PREQI[J-1];

3810 SUM:=0.0;

3820 for K:=1 to JMAX do

3830 SUM:=SUM+L[KI*QI[K];

3850 N[I]:=SUM;

3870 for J:=1 to JMAX do

3880 PREQI[J]:=QI[J];

3900 end;

4200 end;

Fig. 3. The optimized program.

(ii) Time reduction

For time reduction of this program, extraction
of a loop invariant from the loop seemed to be
effective because this optimization implies
reduction of the number of nesting loops. That
is, the summation of elements of L calculated
by the funection SUML was a loop invariant with
respect to the outmost loop beginning at 3300.
The optimization was performed by commands
shown in Fig. 2(d) as follows:

(1) The function designators of SUML are
inline-substituted.

(2) Calculation results are stored in the
array variables instead of simple
variables.

(3) SPLIT separates the invariant part from
the loop body.

(4) The first split loop is moved in front of
the outmost loop.

As a result of this optimization, the cpu time
was reduced to 4.6%, that is, from 21' 5" to
58" in IMAX=40. The final program is shown in
Fig. 35

4,3 Discussion of results

(i) Effects

This experiment confirmed the following effects
of two-stage programming. The program could be
produced easily and quickly at the first stage
since we concentrated only on program struc-
ture, Moreover, there were no logical errors
because the program directly corresoponded to
the function, At the second stage, the program
efficiency was satisfactorily improved though
the effect of optimizations depended on each
program feature.

(ii) Auxiliary commands

In this experiment, twenty commands were used
for space reduction and five commands for time
reduction. Some readers may feel that the
number of commands applied is a bit large for
the optimization performed. These commands,
however, are all primitive and most of them are
auxiliary to optimization . As mentioned in the
introduction, this is why the set of
optimization commands is kept small for
practical use., This method may be one solution
to Loveman's question as to whether there is a
complete set of transformations.

(iii) Optimization of algorithms

Some optimizations with respect to modification
of algorithms were not performed in this
experiment. For example, the following equation
must be utilized in summation of L.
jmax
¥ L= 1s
k=1 B :
J=1 jmax

Although the program calculates ;Lk and }_ Ly
k= k:]

individually, the latter summation is gotten
from the following expression using the former
summation: jpax

5-1
Y L o= 1= 3Lk
=y e oy g

Such optimization is difficult for our system
because the system cannot automatically prove
its correctness, It reminds us of Dijkstra's

274 T. Chusho/A good program = a structured program + optimization commands

conjecture[14] that often an efficient program
could be viewed as the successful exploitation
of a mathematical theorem. Further study is
needed to solve this problem without changing
our approach,

5. IMPLEMENTATION

5.1 Description language

CROPS/Pascal is written in Pascal itself. One
of the reasons for this is portability and the
other reason is that the system can be applied
to itself. This system is executed on the TSS
system of HITAC M-160II.

5.2 State-of-the-art for implementation

There are few new techniques required for
implementation. A lot of hints with respect to
flow analysis of this system were given from
Hetch's improver for SIMPLE-T[15], Barth's
experience on [16] Pascal and others[17,18]. As
for symbolic execution, this system performed
it in a simplified way. That is, the specified
variable in the specified range is replaced by
its symbolic value,

5.3 Extensibility

In such a system, extensibility is vital
because addition of new commands is necessarily
required, Therefore, optimization commands are
hierarchically constructed of other commands as
mentioned in 3.2. Moreover, the system is
produced as a highly modularized program so
that modification for addition of new commands
may be localized.

6. CONCLUSIONS

An interactive optimization system for struc-
tured Pascal programs is described in this
paper. The main features of our system are:

(1) All optimization commands are automati-
cally verified in order to keep merits of
a well-structured program during its
lifetime and to make retesting after
optimization unnecessary.

(2) Each optimization is performed with a
combination of primitive commands so that
the system may be flexible enough to
perform various kinds of optimization and
avoid a large catalogue of transfomation
rules.

Other features related to the implementation
are as follows:

(3) Optimization commands are processed
hierarchically by using other
optimization, verification and edition
commands in order to make addition of new
commands easy.

(4) The verification methods for each
optimization command are classified into
five types on the basis of a hierarchy of
command construction,

An experiment confirmed effectiveness of the
system and suggested further study for
algorithmic optimization with automatic proof
of program equivalence,

ACKNOWLEDGEMENT

The author is indebted to T. Watanabe,
T. Hayashi and other colleagues for their
invaluable technical assistance,

REFERENCES

[1] E.W.Dijkstra, GO TO statement considered
harmful, Communications of the ACM, vol.
11, no. 3, March 1968, 147-148.

[2] E.W.Dijkstra, Notes on structured program-
ming, Structured programming, Academic
Press, London and New York, 1972, 1-82.

[3] N.Wirth, Program development by stepwise
refinement, Communications of the ACM,
vol., 14, no. 4, April 1971, 221-227.

[4] D.L.Parnas, On the criteria to be used in
decomposing systems into modules,
Communications of the ACM, vol. 15, no.
12, December 1972,1053-1058.

[5] G.J.Myers, Reliable software through
composite design, Petrocelli Charter, New
York,1975.

[6] B.Liskov et al., Abstraction mechanisms in
CLU, Communications of the ACM, vol. 20,
no. 8, August 1977, 564-576.

[7] D.Knuth, Structured programming with goto
statements, Computing Surveys, vol. 6, no.
4, December 1974, 261-301.

[8] T.A.Standish, D.F.Kibler and J.M.
Neighbors, Improving and defining programs
by program manipulation, Proceedings of
ACM national conference, 1976, 509-516.

[9] T.A.Standish, et al., The Irvine program
transformation catalogue, Department of
Information and Computer Science,
U.C.Irvine, 1976.

[10] D.B.Loveman,Program improvement by source-
to-source transformation, Journal of ACM,
vol. 24, no. 1, January 1977, 121-145,

[11] J.J.Arsae, Syntactiec source to source
transforms and program manipulation,
Communications of the ACM, vol. 22, no. 1,
January 1979, 43-54.

[12] T.Chusho and T,Hayashi, Two-stage program-
ming:interactive optimization after struc-
tured programming, Proceedings of the 3rd
USA-Japan Computer Conference, 1978,
171=175.

[13] T.Hayashi, et al., Top-down structured
programming language for realtime computer
systems-SPL, Hitachi Review, vol. 26, no.
10, October 1977, 333-338.

[14] E.W.Dijkstra, Why naive program transfor-
mation systems are unlikely to work,
Burroughs internal document EWD636, 1977.

[15] M.S.Hetch, Flow analysis of computer
programs, Elsevier North-Holland,
Amsterdam, 1977.

[16] J.M.Barth, A practical interprocedural
data flow analysis algorithm,
Communications of ACM, vol, 21, no. 9,
September 1978, 724-736.

[17] B.K.Rosen, High-level data flow analysis,
Communications of ACM, vol. 20, no. 10,
October 1977, 712-T24.

[18] D.B.Lomet, Data flow analysis in the pre-
sence of procedure calls, IBM J. Res.
Develop., vel, 21, no. 6, November 1977,
559-571.

