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Two-stage programming is a solution in order to apply structured programming to a field with severe

object efficiency requirements. The methodology pro
ing criteria of well-structured and efficiency shoul

posed in this paper insists that the two conflict-
d be considered separately, and optimization is

performed after structured programming. The purpose of two-stage programming is to make programming
easier by expanding Dijkstra‘s principle into "one decision at a time with one criterion". An in-
teractive system, CROPS, is designed so as to support this method. CROPS provides commands for re-~

structuring an initial program, optimizing a well
among program components. Some optimizing comman

-structured program and partitioning the main memory
ds automatically prove the equivalence of an optimized

program and the pre-optimization program, and do not modify a well-structured source program. For
other optimizing commands, many verification commands and additional commands are provided and equiva-

lence can be interactively proved by using them.
mming experiment.

1. INTRODUCTTON

For the past few years, considerable effort has been
made to improve software productivity, reliability
and maintainability. This problem has now become
even more important because of recent rapid increa-
ses in the amount of software produced. Research
has been dealing with almost every part of the soft-
ware development processes and, above all, the grea-—
test attention has been focused on "structured pro-
gramming",

.The meaning of structured programming is not defini-
tely defind but the common essence is to produce a
well-structured program. There are well-known tech-
niques for structured programming such as structured
coding which restricts control statements within
sequence, selection and iteration C1], and top-down
development by stepwise refinement £21, [3]. Re-
cently, modularization techniques such as decomposi~
tion based on information hiding [4], composite de-
sign [5], etc. and abstraction techniques such as
CLU [6] have been also investigated.

On the other hand, adequate attention has not focus-
ed on the main disadvantage of structured programm—
ing, that is, degradation of object efficiency.
This is because software productivity has been con-
sidered more important than object efficiency in
large computer systems. 1In minicomputer and micro-
computer systems, however, this is not necessarily
true because the main memory capacity is limited and
efficient memory use is very important. Therefore,
appling structured programming to such fields, soft-
ware must be developed with the following two con-
flicting criteria: ’

(1) to produce well-structured programs

(2) to produce efficient programs

Two-stage programming is proposed in order to solve
this problem. That is, first a well-structured
program is developed without: considering efficiency
and then it is optimized in the second stage. ‘The
most important consideration is to maintain the

These functions are presented with a sample progra-

well-structured program in the second stage. There-
fore,an interactive system, conversational restruc-
turing, optimizing and partitioning system (CROPS),
was designed to support this method. CROPS has the
following three functions:

(1) restructuring an initial program

(2) optimizing a well-structured program

(3) partitioning the main memory among program

components.

In particular, this optimization is the leading fun-
ction of CROPS and is examined in detail, The
accuracy of two-stage programming and CROPS is con-
firmed through experiments using a specially deve-
loped structured programming language (SPL).

2. TWO_STAGE PROGRAMMING

2.1 Problem of Structured Programming

Recently, the improvement of produgtivity has become
important in fieids with severe object efficiency
requirements such as system programs and real-time
programs. Therefore, the application of structured
programming to such fields shonld result in improved
productivity. 1In this case, however, both the well-
structured and efficiency aspects which are often
conflicting must be considered at the same time while
developing programs. Consequently, programmers are
liable to care more about efficiency than about
structure and thus structured programming is neglect-
ed. For example, although Wirth considered effici-
ency in each stage when producing a sample program by
stepwise refinement (3], most programmers are not
prepared to do so. Therefore, an adequate programm-
ing methodology is necessary for the effective appli-
cation of structured programming.

2.2 Optimization after Structured Programming

The simplest solution to the above-mentioned problem
is to separate optimizing from structuring. fThis
melhodology pamed two~-slage programming in this paper
expands Dijkstra's principle [2] of "one decision at

a time" into "one decision at a time with one
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criterion" and makes programming easier.
2.2.1 Structuring stage

In this stage, programmers concentrate on producing
a well-structured program from the viewpoints of high
reliability, maintainability and documentability.

At the end of this stage, the testing and validation
of a coded program should be completed.

2.2.2 Optimizing Stage

In this stage, the program developed in the first
stage is modified to satisfy the restrictions of an
actual object machine such as the main memory capa-
city and execution time. The most important con-
sideration at this time is to optimize without the
destruction of the well-structured program. If the
final structure of the source program is the same as
a conventional one which is complex and difficult to
understand, maintainability is not improved and
maintenance costs, which are now larger than deve-
lopment costs, are not reduced.

The best way to preserve a well-structured program

is to not modify the source program but only to alter
the object program by giving commands to a compiler.
Even if modification of the source program is nece-
ssary. it should not be destruction but restruction.

2.3 Interactive System for Two-Stage Programming

Two-stage programming is composed of the following
four steps:

step 1 : initial programming
step 2 : restructuring

step 3 : optimizing

step 4 : partitioning

First, an initial program is produced by using struc-
tured programming. In the next step, this program

is reviewed and restructured from the same viewpoints
as in the first step. Then, general optimizations
are applied to this program in the third step. Last,
the main memory is partitioned among program com-—
ponents.

The interactive system, CROPS, was designed in order
to apply this method to practical use. This system
provides commands for the second, third and fourth
steps. Restructuring commands are prepared so as to
modify the source program. Optimizing commands and
partitioning commands are provided for alterations
in the object program.

Some optimizing commands automatically prove the
equivalence of an optimized program and the pre-
optimization program and the other optimizing co-
mmands do not. Consequently, the former commands
preserve the source program structure but the latter
commands modify it. If the source program is not
modified in the latter case, the source program func-
tion may be different from the function of the-opti-
mized object program and it is very difficult to
debug the source program on the basis of the ex-—
ecution result ot the object program. The system
provides verification commands and other additional
commands in order to supplement such a defect of' the
latter commands, and then, equivalence can be in-
teractively proved by using these commands.

3. SAMPLE PROGRAMMING

An experiment was conducted with sample programming
for the purpose of confirming the effect of two-stage
programming. The sample program was written in
structured programming language SPL C7], Cel.

3.1 Description Language SPL

The description language SPL was developed for the
production of industrial real-time software and is
provided with ample and powerful facilities for mo-
dularization, stepwise refinement and structured
coding. Each program consists of an environment
module and a process module. The environment module
is composed of declarations of variables, data types,
etc. and constructs a tree structure in order to ex-
actly express these scopes. The process module is

a set of procedures called functions and is posi-
tioned unuer an suitable environment module as its
descendant. Consequently, an SPL program becomes

a hierarchy of these modules. A sample is shown in
Fig. 1.

E A ———mgmm=—m (a)
E_B (B) ‘h‘
E_C (c)

E_C1 (cl)
E_C2 (c2)
E_C3 (c3)
E_D (D)
E_D1 (p1)
E_D2 (p2)
E_D3 (p3)
E_DA (Db4)
E_D5 (DS)

E_aa : an environment module

(aa) : a process module

Fig. 1. Module hierarchy of sample program

3.2 Sample Program .

A paging process analysis program of an SPL compil‘zﬁ

was selected as a sample program because this seeme.

appropriate in size ana complexity. The specifica-

tions of this program are:

(1) Input data is a sequence of auxiliary memory
addresses referenced by the SPL compiler.

(2) Analyses of the LRU property and static
frequency distribution of input data.

-(3) Comparison of five paging algorithms applied
to input data.

The purpose of this analysis program is to find

suitable page size and paging algorithm for the SPL

compiler.

3.3 Programming Process

The sample program was developed in accordance with
two-stage programming composed of four steps. This
process is briefly described in this section and the
commands used in the restructuring, optimizing and
partitioning steps are detailed in Chapter 4.
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(1) 1Initial Programming step
The initial program was developed by stepwise refine-
ment. First, variables and constants referenced from
the whole system were declared in environment module
E_A and the top level procedure was defined in pro-
cess module A, as shown in Fig. 2. Then, three func-
tions referenced in A were refined. For example, the
second function and its environment module are shown
in Fig. 3. The two variables in E_C are referenced
in common from three functions referenced in C. The
data type PAGE-SEQUENCE in E_A was refined in E_B as
follows: ’

type PAGE_SEQUENCE = array (MAXNO); )
Such stepwise refinements were repeated and the final
module composition of this program is shown in Fig. 1.

environment E_A;

del;
var PSIZE,
NPAGE ;
var PSEQ: PAGE_SEQUENCE,
NDATA ;
const MAXADR = 16384,
SSIZE = 64,
MAXPG = 256;
const ENDMK = -1;
end;
end E_A;

process A (E_A);
function PAGING opt (main);
for PSIZE = SSIZE, SSIZE*8 through PSIZE*2
repeat
INITIALIZE PAGING;
ANALYZE PAGE_SEQUENCE ;
APPLY PAGING ALGORITHMS TO PAGE_SEQUENCE ;
end;
end PAGING;
end A;

Fig. 2. Top level modules of sample program

environment E_C (E_A);
del;
var LTABLE(MAXPG);
var STABLE(MAXPG) : (FREQ, PGNO);
end E-C;

process C (E_C);
function ANALYZE PAGE_SEQUENCE opt (open);
EXAMINE LRU_PROPERTY;
EXAMINE STATIC REFERENCE FREQUENCY;
COMPARE LRU WITH STATIC;
end ANALYZE;
end C;

Fig. 3. Sample of second level modules

(2) Restructuring step

The abovementioned initial program was reviewed and
modified. The completed program has 12 environment
modules and 13 process modules which include 33 func-
tions. The object length is 5910 words and execu—
tion time is 377 seconds as shown in Table 1 (a).

(3) Optimizing step

The optimizations of the object length and execution
time were performed individually. As a result, the
length was reduced by 34% and the time was reduced
by 47% as shown in Table 1 (b) and (c).

Table 1. Results of experiments

object ratio | execution| ratio

length(w)| to(a) | time(sec)| to(a)

a|Well-structured | o T o 377 1.00
program

p|memory-optimized] ;5,0 [5.66 378 1.003
program

c| time-optimized 5927 |1.003 200 0.53
program

(4) Partitioning step

There are various ways to partition the main memory
and they depend on the requirements of each program.
No particular requirements were assumed in this ex-
periment. Instead all possible cases were examined.

3.4 Discussion of Results

This experiment confirmed the following effect of
two-stage programming. The program could be produced
eusily and quickly in the first stage since the pro-
gram structure was concentrated on. There were only
two logical errors im the first stage program, and
moreover, it was easy to find ana debug them. 1In the
second stage, the program efficiency was satisfac-
torily improved though tne effect of optimizations
depended on each program feature. It is interesting
that the execution time of the memory -optimized pro-
gram and the object length of the time-optimized
program scarcely increased as shown in Table 1 be-
cause some of optimizations reduced bnth time and
memory .

As for proof of program correctness, it is the most
important but the most difficult problem in software
engineering. Two-stage programming, however, re-
duces this dafficulty by separating the verification
process into two stages as follows:
(1) correctness proof of a well-structured program.
(2} equivalence proof of an optimized program and
the pre-optimization program.
The object of the correctness proof is limited to a
well-structured program. The equivalence pront is
somewhat easier and is semi-or fully-automatically
pertormed by CROPS.

4. BASIC FUNCTIONS OF CROPS

4.1 Restructuring Functions

This section decribes typical commands related to
structured programming but except commands such as
any text editor has.

(1) MOVE command of declarations

This command is used to move declarations for varia-
bles, constants, etc. to the upper environment module
when it is necessary to refer to them outside their
scopes. The system displays the altered range of
their scopes and checks if this command barms the
scope of other identifiers of the same name as moved
identifiers.

(2) ADD command of functions

One solution to refering to a variable outside its
scope is mentioned above. This solution, however,
may degrade program reliability because of unnece-
ssary extension of the scope. The second solution is
that a new function for the reference to the variable
is added to a descendant process module of the en-
vironment module which contains the variable declara-
tion. Thus, the variable can be referenced through
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this new function. This approach is similar to
Parnas's information hiding [4] or Liskov's data ab-
straction [6]. The ADD command for the function is
used in this case.

(3) MERGE or SPLIT command of process modules

An initial program should be reviewed in order to
make its module composition easier to understand.
That is, the module composition should be improved
by increasing individual module strength and de-
creasing mutual module coupling, which are Myers's
measures [5]. The MERGE or SPLIT command of process
modules is used in this case. The system examines
the necessity of modifying the scopes of variables
etc. referenced by a moved module.

4.2 Optimizing Functions

Several typical optimizing functions of CROPS are
presented with samples in this section.

(1) SHARE command of variable storage areas

It is recognized that some variables can share their
storage areas for memory saving since a dynamic con-
trol structure of a hierarchical program is easy to
understand. The SHARE command is used in this case.
The system examines command correctness by analyzing
the module composition and function reference rela-
tions. If a command is doubtful, the system dis-—
plays the reason and demands that the user should
confirm its correctness. An automatic sharing
command is also provided.

(2) Commands for change of similar parts to sub

In the sample program, there are six variable ini-

tializations which are the same descriptions except

for their variables. These similar parts are uni-
fied to a subroutine for memory saving by the
following process: ’

(i) A new function is defined as follows:
function CLEAR(TABLE(MAXPG) ) opt(open);

var NOj
for NO = 1, NPAGE
repeat  TABLE(NO) = O;
end;
end CLEAR;

(ii) The six similar parts are replaced by referen-
ces to CLEAR.

(iii) Each reference is temporarily expanded into
the body of CLEAR and the expanded part is
compared with the pre-optimization program
for equivalence proof. If both programs are
the same, this optimization is correct.

(iv) The function option of CLEAR is changed from
open to subroutine.

(v) The storage option of the variable NPAGE
declared in E_A of Fig. 2 is changed to
common.

In this process, (i) and (ii) are performed by re-

structuring commands, ADD and REPLACE, and (iii),

(iv) and (v) by optimizing commands, EXPAND,

COMPARE and OPTION.

(3) Commands for unification of the same parts
In the following refinement of the third function
referenced in A of Fig. 2, four similar functions,
(a), (b), (c) and (d), are referenced.
function APPLY PAGING ALGORITHMS TO PAGE_SEQUENCE;

var I;

for I =1, BLOOP

repeat BPAGE = BSIZE(I)/PSIZE;

(a) APPLY FINUFO;
(b) APPLY FIFO;
(c) APPLY FIVE;
(d) APPLY OPTIMUM;

COMPARE RESULTS;
end;
end APPLY; .
For memory and time saving, therefore, it is possi-
ble to unify the same parts in the bodies of these
functions through the following process:
(i) These function references are expanded into
their bodies as follows:
(a) INITIALIZE APPLY_FINUFO;
for NO = 1, NDATA
repeat GET (NO)TH PAGE_NUMBER (PGNOQ);
DEMAND (PGNO) WITH FINUFO;
end;
(b) INITIALIZE APPLY_FIFO;
for NO = 1, NDATA
repeat GET (NO)TH PAGE_NUMBER (PGNO);
DEMAND (PGNQO) WITH FIFO;
end;
(c) .... ¢
(a) .... ‘”%
(ii) Four initialization functions are gathered
at the top of the expanded program.
(iii) Four for loops are unified.
(iv) Four GET function references are gathered at
the top of the loop, and unified as follows:
INITIALIZE APPLY_FINUFO;
INITIALIZE APPLY_FIFO;
INITIALIZE APPLY_FIVE;
INITIALIZE APPLY_OPTIMUM;
for NO = 1, NDATA
repeat GET (NO)TH PAGE_NUMBER (PGNO);
DEMAND (PGNO) WITH FINUFO;
DEMAND (PGNO) WITH FIFO;
DEMAND (PGNO) WITH FIVE;
DEMAND (PGNO) WITH OPTIMUM AT (NO)TH;
end; :
In this process, EXPAND in (i), MOVE in (ii) and
(iv), and DELETE in (iii) and (iv) are used to
modify the program. On the other hand, the per-
mutation correctness in (ii) and (iv) is automati-
cally verified by examining the local independence
of moved statements. The equivalence proof of for
loop unification in (iii) is performed by LOCAL
command which examines the local independence of
the loop body of each pre-optimization program. The‘ﬂ%
unification of GET function references in (iv) is
verified by EFFECT command which examines the side
effect of the function.

(4) Commands for unification of functions

It is possible to unify similar functions for me-

mory saving. For example, three functions, DEMAND

{PGNO) WITH FINUFO, FIFO and FIVE, are unified by

the following process:

(i) pifferent parts in these function bodies are
distinguished.

(ii) The unification function is defined while
describing the different parts with compile
time if statements (%if) as follows:

function DEMAND (PGNO) WITH (ALGOR) opt(open);

H

if T(PGNO).PTR
then %if ALGOR FINUFO then ...
FIFO then ;

FIVE then ...

&1 15

end;
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4@@\

(1ii) A sequence of original function references
are modified by using a compile time for
statement (%for) as follows:

%for ALGOR = FINUFO, FIVE

repeat DEMAND (PGNO) WITH (ALGOR);
end;

(iv) The results of temporary compile time execu-
tion for this unification function are com-
pared with the pre-optimization program for
equivalence proof. If both programs are the
same, this optimization is correct.

(v) Compile time statements are converted to or—
dinary statments, that is, %symbols are
deleted.

In this process, COMPARE in (i) and (iv), ADD in (ii),
REPLACE in (iii), EXPAND in (iv) and DELETE in (v)
are used.

(5) EXTRACT command of common parts in if
It is possible to extract common parts of a then
phrase and else phrase behind an if statement for
memory saving. For example, the assignment state—
ments TOP = PGNO in the following part of process
module Cl are extracted:

if TOP .EQ. O

then TOP = PGNO;
BO1''OM = PGNO;
LSTACK(PNGO) = PGNO;
else  LSTACK(PGNO) = TOP;
LSTACK (BOTTOM) = PGNO;
TOP = PGNO;
end;

The equivalence is automatically verified by examin-
ing the local independence of the assignment state-
ment in the then phrase.

(6) Verification commands

The system provides auxiliary commands for verifica-
tion because there are some optimizing commands for
which automatic verification is very difficult. For
example, it seems possible to transfer part (a) to
part (b) while eliminating the if statement for me-
mory and time saving as follows:

for NO = 1, NPAGE

repeat LSUM = LSUM-LTABLE(NO);
if NO .NE. 1
(a) then SSUM = SSUM-STABLE(NO-1).FREQ;
end;
(b) SSUM = SSUM-STABLE(NO).FREQ;
end;

(a) is equivalent to (b) if the following three

predicates are true:

(i) The variable SSUM is not referenced between
(b) and (a) in the loop.

(ii)  The value of variable STABLE(NO) .FREQ does not

change between (b) and (a).

SSUM is not referenced after the execution

of this loop.

The truth of these predicates is proved by verifica- ,

tion commands.

(iii)

4.3 Partitioning Functions

The main memory partitioning commands are:

(1) A storage option command specifies a storage
allocation of a variable with a option such as
local, common, global or bulk.

(2) A function option command such as open, close
or subroutine.

Generally, bulk and subroutine will be entered for

memory saving, and others for time saving.

5. CONCLUSIONS

This paper proposed two-stage programming method
which expanded Dijkstra's principle. That is, a de-
signer concentrates on producing a well-structured
program in the first stage, and then, considers
efficiency in the second stage.

The interactive system, CROPS, was designed to su-
pport this method. The system provides commands for
restructuring an initial program, optimizing a well-
structured program and partitioning the main memory
among program components. The most important con-
sideration of this method is to maintain the well—
structured program in the optimizing stage. There-
fore, some optimizing commands automatically prove
the equivalence of gn optimized program and the pre-
optimization program in order to conserve the well-
structured program. On the other hand, many verifi-
cation commands and additional commands are provided
in order to supplement the other optimizing commands
and equivalence is interactively proved by using
these commands.

An experiment using this method confirmed the simp-
lifications in programming, debugging and verfica-
tion resulting from this system. Further study is
needed to increase the volume of optimizing commands
which automatically prove equivalence.
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