
Web Service Integration Based on Abstract
Forms in XML for End-user Initiative

Development

Takeshi Chusho, Ryousuke Yuasa, Shinpei Nishida and Katsuya Fujiwara ∗

Abstract— The number of end-users using the In-
ternet has been increasing. End-user initiative de-
velopment of applications has become important for
automation of end-users’ own tasks. In particular,
Web applications should be supported by domain
experts themselves since Web applications must be
modified frequently based on domain experts’ ideas.
This paper describes end-user initiative application
development by Web service integration. The ab-
stract forms are considered as interfaces of services
based on the simple concept that “one service = one
form.” Therefore, Web service integration can be de-
fined as form transformation from input forms into
output forms. There are two problems for develop-
ment of Web applications by Web service integra-
tion. One is how to communicate with conventional
Web applications. The other is how to merge XML-
based Web services. This paper proposes the Web
page wrapping method by the HTML-to-XML trans-
formation and the XML merging methods. In these
methods, application-specific processes are described
in XSLT stylesheets with visual tools by end-users,
and application-independent processes are generated
automatically. In particular, the multistage XML
merger is introduced for treating complicated busi-
ness logic.

Keywords: Web service, form transformation, object-

oriented technology, XSLT stylesheet, end-user com-

puting

1 Introduction

The number of end-users using the Internet inside and
outside of the office has been increasing. As a result, the
number of Web applications which end-users use has also
been increasing. Most of these applications are developed
by IT professionals. Thus, the work to be automated is
limited to particular tasks such as electronic commerce
relating to B-to-B and B-to-C, for example, which calcu-
lates profit over the development cost. Furthermore, it
is difficult to develop and maintain applications quickly.

∗Manuscript received December 28, 2006. T. Chusho, R. Yuasa
and S. Nishida are with the Department of Computer Science, Meiji
university, kawasaki, Japan (e-mail:chusho@cs.meiji.ac.jp). K. Fuji-
wara is with the Department of Computer Science and Engineering,
Akita University, Akita, Japan (e-mail:fujiwara@ie.akita-u.ac.jp)

Primarily, Web applications should be supported by do-
main experts themselves since Web applications must be
modified frequently based on the domain experts’ ideas.

Therefore, end-user initiative development of applications
has become important for the automation of end-users’
own tasks. In the near future, the information society
will require such new technologies empowering domain
experts and enabling them to automate their own work
independently without extra training or the help of oth-
ers.

In the business world, recently, the external specifications
of application software are considered as services. Some
infrastructure technologies such as SOAP [15], UDDI [12]
and WSDL [16] are used for rapid Web service provision
[9] [11]. For example, Amazon [1] and Yahoo [18] provide
Web service interfaces.

As for UDDI, problems concerning security, trust, quality
etc. must be resolved for practical use in e-marketplaces.
Therefore, such infrastructures may pervade from local or
private areas such as private UDDI to global areas such
as e-marketplaces.

As a solution based on CBSE(Component-Based Soft-
ware Engineering) [2] and SOA(Service-Oriented Archi-
tecture), this paper describes a form-based approach to
Web service integration [14] for end-user computing, be-
cause end-users consider their applications as a level of
service, not as a level of software. That is, the service
counter is considered as a metaphor to describe the inter-
face between service providers and their clients for Web
services, and is designed based on the simple concept that
“one service = one form.” This concept provides form-
based interfaces enabling Web service integration to be
defined as the form transformation from input forms into
output forms. In addition, our approach will be applied,
primarily in local areas such as within a group of trusted
organizations, at an experimental stage of the end-user
initiative development.

There are some other works related to the end-user ini-
tiative development. In the database field, the example-
based database query languages [13] such as QBE(Query-
By-Example) were studied. User-friendly inquiry lan-

guages were proposed in comparison with SQL. In the
programming field, the technologies for programming by
example [10] were studied. The non-programming styles
for various users including children and for various do-
mains including games, were proposed. Our research tar-
get is business experts and business domains.

This paper presents the end-user initiative approach in
Section 2, technical issues for automatic integration of
these services in Section 3 and our solutions in Section 4,
Section 5 and Section 6.

2 End-user Initiative Approach

2.1 Basic Concepts for Web Services

For Web applications supporting Web services the follow-
ing two features are considered to be essential:

(1) Rapid development and continuous maintenance.

(2) End-user initiative.

Business based on Internet technology is rapidly chang-
ing. For this reason, the application development period
from defining a new business model through releasing
new services, must be kept short. If it is not, the busi-
ness chance will be lost. Furthermore, after the release,
the application should be maintained continuously as the
business world changes. Conventional ways for applica-
tion development and maintenance by system engineers,
are not suitable because of the lack of timeliness.

Our approach to how to make Web applications support-
ing Web services is shown in Figure 1 [5]. The three
layers of the left zone and the central zone imply the
abstract level and the concrete level, respectively. The
right zone implies technologies. The business model at
the business level is proposed by end-users of domain ex-
perts. Then, at the service level, the domain model is
constructed and the required services are specified. That
is, the requirement specifications of the application for
the business model are defined. At the software level, the
domain model is implemented by using components to be
combined.

In this approach, there are two technological gaps, these
being, the granularity gap between components and the
domain model, and the semantic gap between the domain
model and end-users. The granularity gap is bridged by
business objects, patterns [8] and application frameworks
[7] based on CBSE(Component-Based Software Engineer-
ing). Conversely, the semantic gap is bridged by form-
based technologies.

As for the granularity gap, our previous studies verified
the effectiveness of application framework technologies by
development of service counter frameworks.

Business

Service

Software

End-users
(Domain experts)

Domain Model
(Application)

Components
(Business objects)

Semantic Gap

Granularity Gap

Forms

Frameworks

Patterns

Figure 1: Technologies for bridging gaps between end-
users and components.

Concerning the semantic gap, this gap was bridged by
agent technologies detailed in our previous studies [4].
That is, an intelligent form with an agent which learns
business logic, was introduced. However, in our recent
studies on end-user initiative development, it is consid-
ered that a simple form is better for end-users.

2.2 Metaphors for Web Services

We direct our attention to an application system for a
service counter. Such a service counter is not limited to
the actual service counter in the real world. For example,
in a supply chain management system (SCM), exchanges
of data among related applications can be considered as
data exchanges at the virtual service counter.

Of course, many kinds of service counters have already
been put to practical use on the Internet and in intranets.
However, these systems must have been developed by IT
professionals, not by end-users, and are expensive. Fur-
thermore, although the domain experts require frequent
modification of specifications in these systems for service
upgrades, it is difficult to modify software quickly because
the domain experts do not maintain the systems them-
selves and need to rely on the IT professionals instead.
Therefore, our goal is the development and maintenance
of form-based applications by end-users.

Generally, the service counter receives service requests
from clients to service providers as shown in Figure 2.
Forms to be filled in are considered as the interface be-
tween them. That is, the following concept is essential
for our approach:

”One service = One form.”

The integration of some individual Web services is consid-
ered as transformation from some input forms into some
output forms as shown in Figure 3 with the goal being
that domain experts make an application by form trans-

Figure 2: A service counter as a metaphor for Web ser-
vice.

Form
Trans.

Form b1
Form b2

Form a1
Form a2

: :

Figure 3: The form transformation for Web service inte-
gration.

formation.

In this case, most of these forms are not visual forms, but
are abstract forms in XML. Since end-users consider such
Web service integration as work flow with visual forms
which they are familiar with, IT skills are not required of
end-users.

For example, in making reservations for travel and accom-
modations, when one service provider receives the input
form for reservations for both a hotel room and a flight,
the provider transforms the input into the first output
form for reservation of the hotel room and the second out-
put form for reservation of the flight. Then, the provider
sends the first output form to the service provider provid-
ing hotel room reservations and the second output form
to the service provider providing flight reservations, re-
spectively. When the provider receives both replies to
these output forms, that is, the first input form on avail-
able hotel rooms and the second input form on available
seats on a flight, the provider transforms these two in-
put forms into the output form which is a combination
of available hotel rooms and available seats on a flight.
Finally, this output form is returned as the reply to the
initial request. In Web service integration, forms which
are used as the interface between service providers and
those who request service, are abstract forms in XML.

Figure 4: An example of Web service integration.

2.3 A Shift from Message Flow to Form
Flow

Our previous model-driven solution for end-user initiative
application development was based on an object-oriented
model that one task in a domain model of cooperative
work corresponds to one object in a computation model.
This solution requires, out of necessity, fixed architecture
and ready-made components such as business objects for
component-based development. The application develop-
ment environment, M-base, was developed for supporting
this solution [3] . At the first stage in the process, the
system behavior is expressed as a message-driven model
by using a visual modeling tool while focusing on message
flow and components.

However, since end-users are not familiar with object-
oriented technologies, practical development processes
must be provided based on metaphors of an office. That
is, cooperative work at an office is expressed by using a
form flow model. Thus, our approach to end-user initia-
tive development has shifted from a message flow base to
a form flow base.

3 Technical Issues

Let us suppose that we are planning an itinerary by using
reservation services for both hotel accommodations and
flight booking via the Internet, as shown in Figure 4. We
usually visit the Web site of a hotel and the Web site
of an airline company separately, and then book a hotel
room and a flight seat independent of each other.

There are two technical issues for integration of these
services. One is how to communicate with conventional
Web applications which support HTML documents as
user interfaces. Two solutions are considered for this
problem. One is that a front-end part of the Web appli-
cation could be newly developed in accordance with the
XML-base Web service specifications. This solution is,
however, not realistic because many companies will not
do so until the XML-base Web service pervades in the
Internet world. The other, and more practical solution,
is Web page wrapping in which the HTML documents

Figure 5: Web service integration for an individual exam.
schedule.

are transformed automatically into XML documents.

The other issue is how to merge two outputs in XML.
That being, the reasonable combination of information
pertaining to an available hotel room and an available
seat on a flight should be derived from both the hotel
room information in XML and the flight information in
XML.

4 The basic XML merger

4.1 Target Application

For applying our solutions to practical Web service in-
tegration, we select an application which generates indi-
vidual examination schedules for each student [6]. In our
university, actually, the examination schedule is notified
on bulletin boards. Conversely, the university supports
the individual portal sites for each student. The stu-
dent visits the portal site which displays the individual
timetable for classes.

Therefore, we foresee that the XML-base Web service for
the examination schedule will be realized in the near fu-
ture. In our experiment, an actual examination sched-
ule is transformed into an XML document manually. As
for the individual timetable for classes, an actual HTML
document is extracted from the individual portal site for
each student.

The target application generates an individual exam-
ination schedule for each student from the individual
timetable for classes and the examination schedule as
shown in Figure 5.

4.2 System Architecture

The system architecture is shown in Figure 6. The input
of the subsystem, WS-A, is the individual timetable for
classes. This is an actual HTML document which is ex-
tracted from the individual portal site for each student.
This document includes information about subjects for
each student, that is, subject names, instructor names
and class numbers. The WS-A transforms this HTML

Figure 6: System configuration for Web service integra-
tion.

document into an XML document by using the wrapping
technology mentioned previously.

The inputs of the subsystem, WS-B, are two XML docu-
ments. One is the individual timetable for classes for each
student in XML. The other is the examination schedule in
XML, which includes information about subject names,
dates and periods, and room numbers. The WS-B merges
these two XML documents into the individual examina-
tion schedule in XML format for each student.

The input of the subsystem, WS-C, is the individual ex-
amination schedule in XML. The WS-C transforms this
XML document into an HTML document which can be
displayed on the Web browser for each student.

5 Scripting Business Logic

5.1 End-User Support

The system administrator of this application is not an
IT professional but a clerk in the university office. Such
an end-user does not have the ability to perform pro-
gramming, but needs only to modify the system when
the inputs change.

For the solution of this problem, basically, the procedure
of this application is described in a script language. Fur-
thermore, a visual tool supports the end-user.

5.2 HTML-to-XML Transformation

The WS-A subsystem transforms the HTML document
into an XML document. The input is the individual
timetable for classes in HTML. The following XML doc-
ument is generated from the information about subject
names and instructor names which are extracted from
this HTML document.

<?xml version="1.0" encoding="UTF-8"?>

<personaltimetable>

<subject>

<name>Software Engineering</name>

<instructor>Txx Cxx</instructor>

</subject>

</personaltimetable>

This procedure is composed of two steps for use of
XSLT(XSL Transformations) [17]. At the first step, the
HTML document is transformed into the XHTML docu-
ment because XSLT cannot accept HTML documents but
can accept XHTML documents. At the next step, XSLT
is used to transform this XHTML document into the
XML document by using the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform">

<xsl:output encoding="UTF-8" method="xml"/>

<xsl:template match="/">

<personaltimetable>

<xsl:apply-templates

select="/html[1]/body[1]/table[3]/

tbody[1]/tr/td/a[1]/b[1]"/>

</personaltimetable>

</xsl:template>

<xsl:template match="/html[1]/body[1]/

table[3]/tbody[1]/tr/td/a[1]/b[1]">

<subject>

<name>

<xsl:value-of select="/text()"/>

</name>

<instructor>

<xsl:value-of select="../../font[1]/

text()"/>

</instructor>

</subject>

</xsl:template>

</xsl:stylesheet>

In this procedure, only the XSLT stylesheet is dependent
on the individual application, and must be described by
the end-users. The other parts are automated.

It may be difficult, however, for the end-users to describe
the XSLT stylesheet yet although this scripting is com-
paratively easer than programming. This is because the
end user must understand the concepts of Xpath and the
template.

We developed a visual tool which generates the XSLT
stylesheet. This tool is used in four steps. At the first
step, the file name of the HTML document is input into
the text input area which is displayed by the visual tool.
At the second step, the structure of the XML document
to be output is defined in the text input area under the
guidance with examples which are displayed by the visual
tool. Alternatively, the user can include the pre-defined
file. At the third step, a class timetable is displayed.
A checkbox is located in front of items such as subject
name, instructor name or room number in this timetable
as shown in Figure 7 although the original timetable does

Figure 7: A part of the timetable embedded with check-
boxes (in Japanese).

not have such checkboxes. The user selects data to be ex-
tracted from the HTML document by checking the check-
boxes. At the last step, XPath is identified for selecting
elements to be processed, and the XSLT stylesheet is gen-
erated by entering the output file name.

5.3 XML Documents Merging

The WS-B subsystem merges two XML documents, the
individual timetable for classes for each student and the
examination schedule, into the individual examination
schedule in XML for each student. The following XML
document is a part of the examination schedule:

<?xml version="1.0">

<examine>

<subject>

<name>Software Engineering</name>

<instructor>Txx Cxx</instructor>

<grade>3</grade>

<class>14・15</class>

<room>0405</room>

<date>7/24</date>

<time>3</time>

</subject>

<subject>

....

....

</subject>

</examine>

This subsystem generates the XML document as the out-
put by extracting classes which are included in the both
input files. This procedure is composed of the following
four steps:

1. Assign the nodes of two input XML files into vari-
ables.

2. Extract the element to be compared from each input
file by using the variables for counting.

3. Compare two elements.

4. Output the element in the specified format if these
two elements are the same.

For these processes, the XSLT stylesheet is used. XSLT is
a language for transforming XML documents into other
XML documents. Furthermore, XSLT makes use of the
expression language defined by XPath for selecting ele-
ments for processing, for conditional processing and for
generating text. In the XSLT stylesheet, a document
function and a position function are used. The document
function allows access to XML documents other than the
main source document. The input files, xml-1.xml and
xml-2.xml, are assigned to the variables ”first” and ”sec-
ond”, respectively, as follows:

<xsl:variable name="first" select=

"document(’xml-1.xml’)" />

<xsl:variable name="second" select=

"document(’xml-2.xml’)" />

The position function returns the position of one of the
child elements which have the same parent node. The
current position of one of the subject elements which are
included in the xml-1.xml file, is assigned to the variable
”firstposition.” The one included in the xml-2.xml file,
is assigned to the variable ”secondposition.” Then, the
class names and the instructor names of two input files
are compared as follows:

<xsl:for-each select=

"$first/examine[1]/subject">

<xsl:variable name="firstposition" select=

"position()" />

<xsl:for-each select=

"$second/personaltimetable[1]/subject">

<xsl:variable name="secondposition" select=

"position()" />

<xsl:if test=

"$first/examine[1]/subject[$firstposition]/

name[1]= $second/personaltimetable[1]/

subject[$secondposition]/name[1]">

<xsl:if test=

"$first/examine[1]/subject[$firstposition]/

instructor[1]= $second/personaltimetable[1]/

subject[$secondposition]/instructor[1]">

....

In this procedure, the XSLT stylesheet is dependent on
the individual application, and must be described by the
end-users. The other parts are automated. It may be
difficult, however, for the end-users to describe the XSLT
stylesheet although this scripting is rather easy compared
to programming. This is because the end-user must un-
derstand the concepts of iterative processes with vari-
ables.

We developed a visual tool which generates the XSLT
stylesheet as shown in Figure 8: This tool is used in six
steps: In the first step, file names are input into the text
input areas. In the second step, two input XML docu-
ments are transformed into HTML documents in which

the checkboxes are located at the front of each node, and
are displayed. The user selects the parent node of the
element to be compared. Next, the user selects the ele-
ments to be compared. That is, in this application, first
the subject is selected, and then the subject name and
the instructor name are selected. In the third step, the
selected elements are displayed as follows:

F0 /examine[1]/subject[n]/name[1]

F1 /examine[1]/subject[n]/instructor[1]

S0 /personaltimetable[1]/subject[n]/name[1]

S1 /personaltimetable[1]/subject[n]/

instructor[1]

F0, F1, S0 and S1 are symbols for the corresponding
XPaths. The user can define conditions for the compari-
son by using these symbols as follows:

F0 = S0

F1 = S1

The following steps are similar to the second, third and
fourth steps in the WS-A subsystem.

5.4 Generality of the Merging Method

This process can be applied to other general domains. For
example, let us consider that a client wants to acquire a
concert ticket from C company, a flight ticket from A
airline company and to reserve a room at H hotel during
a specified period, by using the system with Web service
integration of these three companies.

In this case, there are the following four input abstract
forms(AFs): AFin1 with the specified period, AFin2 with
information about the concert ticket reservation from C
company, AFin3 with information about the flight reser-
vation from the A airline company, AFin4 with informa-
tion about the room reservation from H hotel.

The basic merger is executed repeatedly for multiple in-
puts. That is, the merging processes as shown in Figure
9, are required for the client request. At the first step, a
list of dates with the available concert ticket is extracted
by merging the dates of AFin1 and the dates with avail-
able tickets of AFin2, and then is output as AF-1. At the
second step, a list of dates with both the available con-
cert ticket and the available flight ticket, is extracted by
merging the dates of the AF-1 and the dates with avail-
able flight tickets of AFin3, and then is output as AF-2.
At the last step, a list of dates in conjunction with the
client’s request is extracted by merging the dates of AF-2
and the dates with available rooms of AFin4, and then is
output as the AFout.

Since these merging processes are the same as the process
for generating an individual examination schedule, the
XSLT stylesheet can be generated by using our visual
tool.

Figure 8: A visual tool for generating the XSLT style sheet. (in Japanese).

Figure 9: Repetition of the basic merger for multiple in-
puts.

5.5 XML-to-HTML Transformation

The WS-C subsystem transforms the XML document
into an HTML document. There are some conventional
tools used for this transformation. The XSLT stylesheet
for this application is generated by using one of conven-
tional tools.

6 Multistage XML merger

The basic merger transforms input abstract forms in
XML into output abstract forms in XML with simple
business logic. Next, this merger is extended for dealing
complicated business logic. As a sample application, the
advisory system for graduation is chosen. This system
advises a student to take specific subjects necessary for
graduation from inputs of both his/her school report and
a manual on graduation requirements. The school report
shows a list of subjects and its units which the student
has already completed. The manual shows conditions for
graduation, which are considered as complicated busi-

Figure 10: A configuration of the multistage merger for
complicated business logic.

ness rules. That is, subjects are categorized into several
groups which compose a hierarchy, and each category has
individual conditions.

For dealing with such complicated business logic, the
multistage merger is introduced as shown in Figure 10.
The previous basic merger is considered as a special case
in this multistage merger that the output of the first
stage, AF-1, is the final output, AFout. In the multi-
stage merger, generally, the intermediate output, AF-k,
is transformed into the next intermediate output, AF-
(k+1).

In the multistage merger, four kinds of templates for the
root element, the subject category, compulsory subjects
and semi-compulsory subjects are introduced. For ex-
ample, the template for compulsory subjects is used at
the second stage. Compulsory subjects have four kinds
of attributes. The attribute of “requiredunit” is the re-
quired number of units. The attribute of “totalunits” is
the number of units which the student has already com-
pleted. The attribute of “comparison” is the condition

of comparison of the number of completed units with the
required number of units. The attribute of “full” is the
state of satisfaction of conditions.

In the template for compulsory subjects, the “require-
dunits” and “comparison” in AF-1 are output into AF-2
without modification. The “totalunits” is calculated by
using Xpath with the sum function and the current func-
tion as follows:

<xsl:attribute name="totalunits">

<xsl:value-of select="sum(current()/

subject[@done = "true"]/@units)"/>

</xsl:attribute>

The “full” is calculated by using Xpath with the not func-
tion as follows:

<xsl:attribute name="full">

<xsl:value-of select="not(current()/

subject[@done = "false"])"/>

</xsl:attribute>

Finally, all data on elements concerning compulsory sub-
jects in AF-1 are output into AF-2.

In this application, the seven steps were necessary for the
confirmation of conditions required for graduation.

7 Conclusions

The form-based approach for Web services integration
by end-user initiative application development was pro-
posed. Our experiments of prototyping were herein de-
scribed. For communication with conventional Web ap-
plications, the Web page wrapping tool for HTML-to-
XML transformation was developed. For merging XML-
base Web services, the basic merger for simple business
logic and the multistage merger for complicated logic
were developed. In these methods, application-specific
processes are described in XSLT stylesheets with visual
tools, and application-independent processes are gener-
ated automatically.

References

[1] Amazon, “Web Services,”
http://www.amazon.co.jp/, 2006.

[2] Brown, A. W., (Ed.), Component-based software en-
gineering, IEEE CS Press, 1996.

[3] Chusho, T., Ishigure, H., Konda, N. and Iwata,
T., “Component-Based Application Development on
Architecture of a Model, UI and Components,”
APSEC2000, IEEE Computer Society, pp.349-353,
2000.

[4] Chusho, T. and Fujiwara, K., “FACL : A Form-
based Agent Communication Language for Enduser-
Initiative Agent-Based Application Development,”
COMPSAC2000, IEEE Computer Society, pp.139-
148, 2000.

[5] Chusho, T., Fujiwara, K., Ishigure, H. and Shimsda,
K., “A Form-based Approach for Web Services
by Enduser-Initiative Application Development,”
SAINT2002 Workshop (Web Service Engineering),
IEEE Computer Society, pp.196-203, 2002.

[6] Chusho, T., Yuasa, R., Nishida, S. and Fujiwara,
“A Form-based Approach for Application Develop-
ment By Web Service Integration,” Applied Comput-
ing 2006, IADIS, pp.600-605, 2006.

[7] Fayad, M. and Schmidt, D. C. (Ed.), “Object-
Oriented Application Frameworks,” Commun.
ACM, V39, N10, pp. 32-87, 1997

[8] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
Design Patterns, Addison-Wesley, 1995.

[9] Gold, N., Mohan, A., Knight, C. and Munro, M.,
“Understanding Service-Oriented Software,” IEEE
Software, V21, N2, pp.71-77”, 2004.

[10] Lieberman, H. (Ed.), “Special issue on Program-
ming by example,” Comm. ACM, V43, N3, pp.72-
114, 2000.

[11] Malloy, B. A., Kraft, N. A., Hallstrom, J. O. and
Voas, J. M., “Improving the Predictable Assembly
of Service-Oriented Architectures,” IEEE Software,
V23, N2, pp. 12-15, 2006.

[12] OASIS, “Advancing Web Services Discovery Stan-
dard,” http://www.uddi.org/, 2004.

[13] Ozsoyoglu, G. and Wang, H., “Example-Based
Graphical Database Query Languages,” IEEE Com-
puter, V26, N5, pp.25-38, 1993.

[14] Peltz, C., “Web Services Orchestration and Choreog-
raphy,” IEEE Computer, V36, N10, pp.46-52, 2003.

[15] W3C, “Latest SOAP versions,”
http://www.w3.org/TR/soap/, 2003.

[16] W3C, “Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language,”
http://www.w3.org/TR/2006/CR-wsdl20-primer-
20060327/, 2006.

[17] W3C, “The Extensible Stylesheet Language Family
(XSL),” http://www.w3.org/Style/XSL/, 2006.

[18] Yahoo-Japan, “Yahoo!Developer Network,”
http://developer.yahoo.co.jp/, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

