
A Form-based Approach for Web Services
by Enduser-Initiative Application Development

Takeshi CHUSHO, Katsuya FUJIWARA, Hisashi ISHIGURE and Kei SHIMADA
Department of Computer Science,

School of Science and Technology, Meiji University
Kawasaki, 214-8571, Japan

chusho@cs.meiji.ac.jp

Abstract

The number of end-users using the Internet increases on

the inside and outside of offices. Enduser-initiative develop-

ment of applications has become important for automation

of their own tasks. Especially, applications for web ser-

vices should be supported by business professionals them-

selves because web services must be modified frequently.

This paper describes enduser-initiative application devel-

opment methodologies for the MOON(multiagent-oriented

office network) systems including window work in B-to-

C and B-to-B electronic commerce. The window work is

considered as a metaphor of the interface between service

providers and their clients for web services. The front-

end of the system is constructed by a multi-agent frame-

work. The back-end is developed by modeling techniques.

The multi-agent framework is a Java application framework

and is designed based on the simple concept that “one ser-

vice = one form.” It provides form-based interfaces as a

common XML-base protocol of {who, what, how } for end-

users, which protocol corresponds to the UDDI protocol of

{white, yellow, green } pages. Then form transformation

from an input form into output forms implies service inte-

gration. Prototyping for the front-end system and the back-

end system is performed in Java and XML1.

Key words : web service, multi-agent, application frame-

work, object-oriented technology, electronic commerce

1H. Ishigure and K. Shimada are with Hitachi, Ltd. and Hitachi Soft-
ware Eng. Co., Ltd. at present respectively.

1. Introduction

The number of end-users using the Internet increases on

the inside and outside of offices. Enduser-initiative develop-

ment of applications has become important for automation

of their own tasks. Especially, applications for web services

should be supported by business professionals themselves

because web services must be modified frequently.

As the solution based on CBSE(Component-Based Soft-

ware Engineering) [2], this paper describes a form-based

approach for end-user computing under distributed systems.

As a typical distributed information system, we direct our

attention to an application system for windows or counters

in banks, city offices, travel agents, mail-order companies,

etc. Some kind of window work such as mail-order busi-

ness has already been put to practical use in current com-

puter networks including the Internet as online shopping.

However, the work to be automated may be limited to par-

ticular ones such as electronic commerce related to B-to-B

and B-to-C, which make a profit over the development cost.

In the near future, the information society will require

such new technologies that domain experts can automate

their own work by themselves and that almost all clients

can operate computers at home or at office without extra

training or without the help of others.

In the business world, recently, the external specifica-

tions of application software is considered as services. The

various infrastructures such as SOAP [15], UDDI [14],

WSDL [16] are proposed for rapid web service provision.

For practical use in e-marketplaces, some problems on se-

curity, trust, quality etc. must be solved. Therefore, such

Business

Service

Software

End-users
(Business professionals)

Domain Model
(Application)

Components
(Business objects)

Semantic Gap

Granularity Gap

Agents

Frameworks

Patterns

Figure 1. Technologies for bridging gaps be-
tween end-users and components.

infrastructures may pervade from local or private areas such

as private UDDI to global areas such as e-marketplaces.

It becomes necessary for end-users to develop and main-

tain applications because web services change continuously.

Our approach will be applied primarily into local areas such

as a group of trusted organizations also at an experimental

stage of the enduser-initiative development, that is, C-to-D

(Client to Department) and D-to-D (Department to Depart-

ment) rather than B-to-B and B-to-C.

Multi-agent systems must be the solution for these prob-

lems because end-users may teach their operations to agents

without programming [1, 9, 10]. Actually, multi-agent

systems are used for advanced applications based on dis-

tributed systems and the Internet such as electronic com-

merce support systems [11]. An agent communication lan-

guage(ACL) is one of the key technologies for interactions

among independently-developed applications with agents.

Then the standardization is being tried by FIPA(Foundation

for Intelligent Physical Agents) [6] and OMG(Object Man-

agement Group) Agent WG [13].

This paper presents the enduser-initiative approach in

Section 2, prototyping of the front-end system in Section

3, prototyping of the back-end system in Section 4.

2. Enduser-Initiative Approach

2.1. Basic concepts for web services

For web applications supporting web services, the fol-

lowing two features are considered to be essential:

(1) Rapid development and continuous variation.

(2) End-user initiative.

Business based on Internet technologies, is rapidly

changed. For this reason, the application development pe-

riod from defining a new business model through releasing

new services, must be short. If not, the business chance

will be lost. Furthermore, after the release, the application

should be maintained continuously as the business world

changes. Conventional ways for application development

and maintenance by system engineers, are not suitable be-

cause of no timeliness. For “just-in-use,” enduser-initiative

development is required.

Our approach to how to make web applications support-

ing web services is shown in Figure 1. The three layers of

the left zone and the central zone imply the abstract level

and the concrete level respectively. The right zone implies

technologies. The business model at the business level is

proposed by end-users of business professionals or domain

experts. Then, at the service level, the domain model is con-

structed and the required services are specified. That is, the

requirement specifications of the application for the busi-

ness model is defined. At the software level, the domain

model is implemented by using components to be com-

bined.

In this approach, there are two technological gaps, that

is, the granularity gap between components and the domain

model, and the semantic gap between the domain model and

end-users. The granularity gap is bridged by business ob-

jects, patterns [8] and application frameworks [5] based on

CBSE(Component-Based Software Engineering). On the

other hand, the semantic gap is bridged by multi-agent sys-

tems.

2.2. Metaphors for web services

As a typical distributed information system, we direct

our attention to application systems for window work. Such

window work is not limited to the actual window work in

the real world. For example, in a supply chain management

2

Security
 Server

Transaction
Server

FormServer

Directory Server

Servers
at Home

University
City Office

Travel
AgentMail-order Co.

Clients

Server-at-windows

Internet

Broker
Agent

Mobile
Agent

Expert Agents

Client Agents

at Office
Outdoorsin Town

Figure 2. A MOON(multiagent-oriented office
network) system.

system (SCM), exchanges of data among related applica-

tions can be considered as the virtual window work.

Of course many kinds of window work have already been

put to practical use in the Internet and intranets. However,

these systems must have been developed by IT profession-

als, not by end-users and are expensive. Furthermore, al-

though the domain experts require frequent modification of

specifications in these systems for service upgrade, it is dif-

ficult to modify software timely because the domain experts

do not maintain the systems by themselves and need to ask

the IT professionals instead. Our goal is development and

maintenance of agent-based applications by end-users.

Generally, window work or counter work is considered

as service requests between clients and service providers.

Forms to be filled in are considered as the interface between

them. That is, the following concept is essential for our

approach:

”One service = One form”

Our actual XML-base protocol of {who, what, how } for

end-users corresponds to the UDDI protocol of {white, yel-

low, green } pages, and form transformation from an input

form into output forms implies service integration, as men-

tioned later.

2.3. Application architecture

Agent-based applications are constructed on a

multiagent-oriented office network (MOON) for window

work [3]. The MOON system is based on a client/server

model and is partitioned into the following three parts as

shown in Figure 2:

1. Client terminals with client agents for sending written

applications to windows, such as personal computers

and workstations both at home and at office, public

telephones with terminals in town, portable computers

for mobile computing outdoors, etc.

2. Server-at-windows with expert agents for receiving

written applications, such as windows in mail-order

companies, city offices, travel agents, universities, etc.

3. MOON servers for managing the network system.

The MOON servers imply the following four servers

and some of them may be located physically in server-at-

windows:

1. A directory server with a broker agent manages net-

work addresses of server-at-windows to receive written

applications as service directories of windows.

2. A form server with a mobile agent manages various ap-

plication forms for services at these windows, which

forms are defined with help messages and selection

menus by domain experts.

3. A transaction server stores written applications re-

ceived by server-at-windows with the identification

numbers, manages the states of the process and replies

to inquiries about the states. It may be connected with

a workflow system in the organization including the

server-at-window.

4. A security server controls access rights to server-at-

windows and the MOON servers, and manages authen-

tication of clients.

In our experiences of prototyping, the actual system con-

figuration is the 4-tier architecture of browsers, web servers,

application servers and DB servers. The front end of the

system is supported by application frameworks and multi-

agents. The back end is supported by domain modeling and

business objects.

In the remainder of this paper, these prototyping experi-

ences are described.

3

3. Prototyping of Front End

3.1. Features of agent-based applications

A customizable multi-agent system is developed as an

application framework which implies a reusable semi-

complete application that can be specialized to produce cus-

tom application. Then the customization of the hot spots in

the application framework implies the agent development

by end-users.

The first feature is electronic form processing which is

navigated by agents both in client terminals and in server-

at-windows. Clients can teach the fixed operations of filling

in a form about such plain words as their names, addresses

and phone numbers to their agents. Then their agents do so

instead. Domain experts can teach their expertise to their

agents. Then the agents guide clients in filling in the form

and check the written form.

The second feature is standardization of ACL for com-

munication between client agents and expert agents. De-

sign of ACL depends on features of multi-agent systems.

This paper describes cooperative multi-agent systems be-

cause clients and domain experts are cooperative in the most

cases of the form-based application domain. Furthermore,

every agent is developed independently and has an individ-

ual goal in the heterogeneous environment, because each of

client agents and expert agents can perform each task alone

in the form-based application domain.

3.2. The basic form of web service interface

Messages of requests to windows include the following

elements:

• Who receives your request?

• What do you request to the window?

• How do you request it?

The name of the multi-agent framework, wwHww, is de-

rived from ‘who-what-how with WWW’ and is pronounced

as ‘who’ for convenience. The following element is added

to these three elements.

• Which is your request?

That is, the basic form is shown as follows:

(who, what, how, which)

The semantics is based on a message passing concept of

conventional object-oriented programming languages. The

four parameters correspond to elements of a message be-

tween objects respectively as follows:

who : A message receiver object

what : A method name

how : Parameters for a method invocation

which : A message number

In the form-based approach, the who-parameter implies

a window where a written application is sent to. The what-

parameter implies the title of the application form. The

how-parameter implies contents of the application form.

The which-parameter implies a receipt number stamped on

the received written application.

The states of values of these parameters affect semantics

of the message. If a value of a message parameter is un-

known, the message implies an inquiry about the parameter.

This semantics is quite different from conventional object-

oriented programming languages. This extension, however,

produces attractive effect. Examples are given in the next

subsection.

3.3. End-user interface

The actual end-user interface for filling in the form is

different from the basic form which is the internal represen-

tation in the system. Examples of requests are given in the

basic form for convenience, where the following notations

are used:

a, b, ... : Parameters with known values.

?a, ?b, ... : Inquiries about the parameters with known

values, which request help messages.

x, y, ... : Parameters without values.

?x, ?y, ... : Inquiries about the parameters themselves,

which request all possibles for selection.

1. (a, b, c, x)

The written application, b, with the contents, c, is sent

to the window, a. A message number will be assigned

to the variable, x, by the window receiving this mes-

sage.

4

2. (a, b, , ?d)

The state in the process of the written application, b,

of the message number, d, is inquired of the window,

a.

3. (a, b, ?x,)

The application form, b, to be sent to the window, a, is

displayed. How to fill in the form is navigated by the

expert agent. Some typical items are filled automati-

cally by the client agent.

4. (a, ?x, ,)

The title list of all application forms which the window,

a, receives, is displayed.

5. (?x, ?y = (a list of keywords), ,)

The list of titles of all application forms which relate

to the list of keywords, is displayed with the names of

windows receiving them. The system retrieves forms

whose titles include the keywords or in which help

messages include the keywords.

6. (?a, , ,)

The explanation on the work of the window, a, is dis-

played.

7. (a, ?b, ,)

The explanation on the application form, b, to be sent

to the window, a, is displayed.

These inquiries must be simpler for end-users than those

of UDDI, although our actual XML-base protocol of {who,

what, how } for end-users corresponds to the UDDI proto-

col of {white, yellow, green } pages.

3.4. Software architecture

The first version of the multi-agent framework, wwHww,

has been developed with a library system, which is used in

our laboratory. Such a form-base system is helpful to us

since there are no librarians in our laboratory, For exam-

ple, we can know who borrowed some book because every-

one fills in an electronic application form when taking out

a book from our laboratory. We can know whether some

book has been already registered or not because everyone

Figure 3. An example of the wwHww browser
at a client terminal.

fills in an electronic application form after he or she bought

the book for our laboratory.

An example of the wwHww browser for taking out books

is shown in Figure 3. The head part indicates the name of

the server-at-window in the who-parameter and the name of

the service in the what-parameter. The white part implies

the how-parameter, that is, the electronic application form

itself requested.

The software architecture is shown in Figure 4. The

wwHww browser of the client side is composed of two sub-

systems, that is, the form browser and the directory browser.

The wwHww server of the server side is composed of three

subsystems, that is, the directory server, the form server and

the transaction server. This system was implemented in Java

and there are Java applet versions and Java application ver-

sions for two browsers.

3.5. An application building procedure

Domain experts build expert agents by using the frame-

work as follows:

1. Service definitions : Services at the window, are de-

fined.

2. Form definitions : Electronic forms for these services

are defined while embedding navigation information

into these forms.

5

wwHww Server

Directory
Service

Transaction
Service

Form
Service

Library
Workflow
System

Library
DBMS

Request

Send

Reply

Reply

Return

wwHww Browser

Directory
Browser

Form
Browser

wwHww
Protocol

Client ServerNetwork

Request

Figure 4. An application and the multi-agent
framework.

Figure 5. An example of the browser for sys-
tem definitions by domain experts.

3. Registration : These definitions are registered into the

corresponding servers.

An example of a browser for the library system defini-

tions is shown in Figure 5. The left-hand part implies a hi-

erarchical directory. The right-hand part implies definitions

about the service for taking out books.

3.6. Examples of XML-base navigation

Intelligent navigation by agents is implemented in XML

base [7]. The meta data for a window is described in an

RDF(Resource Description Framework) style for automa-

tion. An example of a library is partly shown as follows:

<!DOCTYPE RDF [
<!ENTITY site ’http://se.cs.meiji.ac.jp’>

]>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:d="http://purl.org/dc/elements/1.1/"
xmlns:w="http://wwhww.org/1.0/">

<w:Agent rdf:about="&site;/library/">
<d:Title>Library</d:Title>
<d:Description>The library sys-

tem of the SE lab.</d:Description>
<d:Text>The library sys-

tem of the SE lab.
Book take-out ser-
vice</d:Text>

<w:name>/Meiji-U/CS/SE/Library</w:name>
<w:service rdf:resource="&site;/library/takeout"/>
<w:service rdf:resource="&site;/library/return"/>
<w:service rdf:resource="&site;/library/entry"/>
<w:service rdf:resource="&site;/library/modify"/>
<w:service rdf:resource="&site;/library/search"/>

</w:Agent>
<w:Form rdf:about="&site;/library/takeout">

<d:Title>take-out</d:Title>
<d:Description>A procedure for book take-

out</d:Description>
</w:Form>
</rdf:RDF>

While forms are defined in HTML in the conventional

way, the semantics of forms are defined in an RDF style for

automation also. An example of meta data for form defini-

tions is partly shown as follows:

<RDF
xmlns="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"
xmlns:d="http://purl.org/dc/elements/1.1/"
xmlns:w="http://wwhww.org/1.0/">

<w:Form about="http://se.cs.meiji.ac.jp/library
/takeout/">
<d:Title>take-out</d:Title>
<d:Description>A procedure for book take-

out</d:Description>
<w:input>
<w:FormItem>
<w:name>usr</w:name>
<w:datatype resource="http://imc.org/vCard/3.0#FN"/>
<w:value resource="urn:userprofile:@user.name.fulln

ame"/>
<w:help>http://inside.se.cs.meiji.ac.jp/library/tak

eout/help.html#usr</w:help>
</w:FormItem>

</w:input>
</w:Form>
</RDF>

An example of a request message for displaying a list of

services which are provided by the library system,

(a, ?x, ,),

is shown as follows:

6

Figure 6. An example of domain model constructed by using the modeling tool.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:w="http://wwhww.org/1.0/">
<w:Message rdf:about="">
<w:who>/Meiji-U/CS/SE/Library</w:who>
<w:what><w:query/></w:what>

</w:Message>
</rdf:RDF>

4. Prototyping of Back End

4.1. Modeling process

The business logic of the back-end system must be con-

structed by end-users of business professionals or domain

experts. One solution for enduser-initiative application de-

velopment is given as a formula of

“a domain model ≡ a computation model.”

This formula implies that one task in a domain model of

cooperative work corresponds to one object in a computa-

tion model based on an object-oriented model. From this

formula, the other formula of

“analysis ≡ design”

is derived since it is not necessary to convert a domain

model into a computation model with application architec-

ture. This process requires necessarily a fixed architec-

ture and ready-made components as business objects for

component-based development. Application development

environment, M-base, supports these formulas [4].

In our component-based development process by using

M-base, an application architecture is fixed and the behav-

ior of a domain model is first constructed. That is, the appli-

cation architecture is composed of a model, a user interface

and components. At the first stage, the system behavior is

expressed as a message-driven model by using a modeling

tool while focusing on message flow and components. At

the second stage, a user interface is generated automatically

and may be customized if necessary. Then transition di-

agrams of user interfaces are generated automatically and

are used for confirmation of external specifications of the

application. Finally, the system behavior is verified by us-

ing a simulation tool.

4.2. An Example

The following modeling procedure is described while

giving an example:

1. Definitions of external specifications

2. Construction of a domain model

3. Refinement of user interfaces

4. Simulation of behavior

We use a given example of “tasks of a program chair for

an international conference” which is defined and is used

since 1998 by the Working Group on Requirement Engi-

neering, the Special Interest Group on Software Engineer-

ing, Information Processing Society of Japan [12].

7

Form A
Form
Trans.

Form a1
Form a2
Form a3

Figure 7. The form transformation for web ser-
vice integration

The domain modeling step is most essential. The model-

ing and simulation tool is used for constructing the domain

model by mouse manipulation as a kind of visual program-

ming tool. A dynamic model was constructed as shown in

Figure 6 while introducing eleven kinds of objects. Objects

are defined by drag-and-drop from the palette of icons. A

message between objects is defined by drawing an arrow

line from the source object to the drain object.

4.3. Form transformation

Generally business objects may be replaced with web

services while the message flow is replaced with the form

flow. Then as the main functions of a business object are

specified in message transformation from an input message

into output messages, the main functions of some web ser-

vice may be specified in form transformation from an input

form into output forms as shown in Figure 7. It provides a

way for web service integration.

For example, when the CFP production object in Figure

6 is received an input form for CFP production, it sends a

form for requesting the schedule to the Schedule Table ob-

ject, a form for editing the CFP to the Document Editor ob-

ject, a form for printing it to the Printer object and a form for

requesting the distribution to the CFP Distribution object.

5. Conclusions

The Form-based approach for web services by enduser-

initiative application development was proposed. The front

end of the system is supported by application frameworks

and multi-agents. The back end is supported by domain

modeling and business objects. Our experiences of proto-

typing were described.

Acknowledgment

The authors express their gratitude to members of the

survey team for dynamic software service technology, The

Strategic Software Research Forum, for invaluable discus-

sions.

References

[1] Bradshaw, J. M., “An Introduction to Software Agent,” Soft-
ware Agent, MIT Press, pp.3-46, 1997.

[2] Brown(Ed.), A. W., “Component-based software engineer-
ing,” IEEE CS Press, 1996.

[3] Chusho,T. and Fujiwara, K., “FACL : A Form-based Agent
Communication Language for Enduser-Initiative Agent-
Based Application Development,” COMPSAC2000, IEEE
Computer Society, pp.139-148, Oct. 2000.

[4] Chusho, T., Ishigure, H., Konda, N. and Iwata, T.,
“Component-Based Application Development on Architec-
ture of a Model, UI and Components,” APSEC2000, IEEE
Computer Society, pp.349-353, Dec. 2000.

[5] Fayad, M. and Schmidt, D. C. (Ed.), “Object-Oriented Ap-
plication Frameworks,” Commun. ACM, Vol. 39, No. 10,
pp. 32-87, Oct. 1997.

[6] FIPA, “Agent Communication Language,” FIPA Spec 2-
1999, Draft ver.0.1, Apr. 1999.

[7] Fujiwara, K. and Chusho, T., “Enduser-Oriented Distributed
Application Framework, wwHww, - Intelligent Navigation
based on XML,” (in Japanese), IPSJ sigSE, No. 2000-SE-
128, pp.1-8, July 2000.

[8] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design
Patterns, Addison-Wesley, 1995.

[9] Griss, M. L., and Pour, G., “Accelerating Development with
Agent Components,” IEEE Computer, Vol. 34, No. 5, pp.37-
43, May 2001.

[10] Jennings, N. R., “An Agent-Based Approach for Building
Complex Software Systems,” Commun. ACM, Vol. 44, No.
4, pp.35-41, Apr. 2001.

[11] Maes, P., Guttman, R. H. and Moukas, A. G., “Agents That
Buy and Sell,” Commun. ACM, vol.42, no.3, pp.81-91, Mar.
1999.

[12] Ohnishi, A., “Requirements Engineering Working Group (in
Japanese),” Winter Workshop in Kouchi, IPSJ Simposium
series Vol.99, No. 1 pp.21-26, Jan. 1999.

[13] OMG Agent Working Group, “Agent Technology, Green Pa-
per,” OMG Document no. ec/99-12-02, Dec. 1999.

[14] UDDI, “UDDI Technical White Paper,”
http://www.uddi.org/, Sep. 2000.

[15] W3C Note, “Simple Object Access Protocol (SOAP) 1.1 ,“
http://www.w3.org/TR/SOAP/, May 2000.

[16] W3C Note, “Web Services Description Language (WSDL)
1.1,“ http://www.w3.org/TR/SOAP/, Mar. 2001.

8

